A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Franke, S. S.

Paper Title Page
TUPP089 Implementation of Fringe Field Dipole Magnets into the V-Code Beam Dynamics Simulation Tool 1738
 
  • S. S. Franke, W. Ackermann, B. Steiner, T. Weiland
    TEMF, Darmstadt
  • J. Enders, C. Hessler, Y. Poltoratska
    TU Darmstadt, Darmstadt
 
  Fast online beam dynamics simulations can advantageously assist the machine operators at various particle accelerator machines because they provide a more detailed insight into the actual machine status. Based on the moment approach a fast tracking code named V-Code has been implemented at TEMF. Within the SFB 634 project the V-Code beam dynamics simulation tool is supposed to be installed at the Superconducting Darmstadt LINear ACcelerator S-DALINAC which is designed as a re-circulating linear accelerator. In order to be able to simulate the entire beam line, an implementation of fringe field dipole magnets is mandatory. Unlike a hard edged field approach the fringe fields influence the beam focusing and its inhomogeneity results in a non-circular bunch motion. For an accurate reproduction of the transverse motion specialized techniques to obtain and to handle the reference path in V-Code together with the 3D-field data along the curved trajectory had to be developed. In the paper a summary of implementation details together with simulation results will be provided.  
THPC038 Beam Dynamic Simulations of the New Polarized Electron Injector of the S-DALINAC 3062
 
  • B. Steiner, W. Ackermann, S. S. Franke, W. F.O. Müller, T. Weiland
    TEMF, Darmstadt
  • R. Barday, C. Eckardt, R. Eichhorn, J. Enders, C. Hessler, Y. Poltoratska, A. Richter, M. Roth
    TU Darmstadt, Darmstadt
 
  Aiming at an extension of the experimental possibilities at the Superconducting Darmstadt electron linear accelerator S-DALINAC, a polarized gun is going to be constructed at the moment. The new injector will be able to supply polarized electrons with kinetic energy in the 100 keV range and should add to the present unpolarized thermionic 250 keV source. The design requirements include a polarization degree of at least 80%, a mean current intensity of 60 μA and a 3 GHz cw time structure. The gun part is simulated in CST MAFIA whereas subsequent beam dynamics simulations are performed in V-Code. Initial conditions for the V-Code’s moment approach are extracted from the CST MAFIA simulations. The injector consists of short triplets, an alpha magnet, a Wien filter, a Mott polarimeter, a chopper/prebuncher system and beam diagnostic elements. For the simulations, the 3D electromagnetic fields of the beam line elements are used by means of a Taylor series expansion of variable order. All components except the chopper and a collimator is represented in the simulations. Recent beam dynamic results will be presented.