A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Favale, A. J.

Paper Title Page
MOPC057 R&D Energy Recovery Linac at Brookhaven National Laboratory 193
 
  • V. Litvinenko, D. Beavis, I. Ben-Zvi, M. Blaskiewicz, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, G. Ganetis, D. M. Gassner, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, A. K. Jain, A. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, G. J. Mahler, G. T. McIntyre, W. Meng, T. C. Nehring, B. Oerter, C. Pai, D. Pate, D. Phillips, E. Pozdeyev, T. Rao, J. Reich, T. Roser, T. Russo, K. Smith, J. E. Tuozzolo, D. Weiss, N. Williams, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss
    AES, Medford, NY
  • J. R. Delayen, L. W. Funk, H. L. Phillips, J. P. Preble
    Jefferson Lab, Newport News, Virginia
 
  Collider Accelerator Department at BNL is in the final stages of developing the 20-MeV R&D energy recovery linac with super-conducting 2.5 MeV RF gun and single-mode super-conducting 5-cell RF linac. This unique facility aims to address many outstanding questions relevant for high current (up to 0.5 A of average current), high brightness energy-recovery linacs with novel Zigzag-type merger. We present the performance of the R&D ERL elements and detailed commissioning plan.  
MOPD002 Fabrication of ILC Prototype Cavities at Advanced Energy Systems, Inc. 448
 
  • A. J. Favale, M. D. Cole, E. Peterson, J. Rathke
    AES, Medford, NY
 
  Advanced Energy Systems, Inc. has recently completed manufacture of four standard 9-cell TESLA-style ILC cavities, six single-cell ILC prototype cavities, six 9-cell symmetric ILC cavities, and one 9-cell re-entrant cavity of the Cornell design. This paper will present an overview of these fabrication projects and of the evolution of AES capability in cavity manufacturing. To date four of the 9-cell ILC cavities have been tested, the six single-cell cavities have been tested, and the 9-cell reentrant cavity has been tested. Preliminary results will be shown.  
MOPD003 ILC Cavity Fabrication Optimization for High Production 451
 
  • A. J. Favale, M. Calderaro, E. Peterson, J. J. Sredniawski
    AES, Medford, NY
 
  In 2006, AES performed a US based industrial Cost Study of RF units in production quantities sufficient for the ILC. During this study detailed costs were estimated for the fabrication steps of the SRF cavities in high production quantities. In late 2007, AES carried out a more detailed study specifically oriented toward optimizing the high production methods of only the SRF cavities to arrive at a best estimate of cost. We have found that the revised estimate shows a 34% reduction in cavity fabrication cost. We have optimized many of the machining and welding steps to take advantage of automated operations were possible. Our high production cost estimates were based upon actual machining, welding and parts handling times derived during the prototype fabrication of ILC type cavities at AES. These values were then applied with learning as appropriate to more automated operations to reduce labor costs. In addition, the type and size of e-beam welding machines was optimized. We found that the use of all single chamber welders covering three specific sizes was most cost effective. Details of steps leading to the stated conclusions are presented herein.