A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Fartoukh, S. D.

Paper Title Page
WEPP003 Optics Flexibility in the LHC at Top Energy 2524
 
  • M. Aiba, H. Burkhardt, S. D. Fartoukh, M. Giovannozzi, S. M. White
    CERN, Geneva
 
  We report on studies of optics flexibility which allow for tune changes of the order of half a unit at top energy in the LHC. We describe how this could be done using one or several of the insertions IR2, IR4, IR8 or the main quadrupoles and discuss and compare the implications. This flexibility could be used to compensate for the loss in tune for high beta optics and may make it feasible to use the standard injection and ramp for these configurations. Potential further applications are also highlighted.  
WEPP012 Analysis of Optical Layouts for the Phase 1 Upgrade of the CERN Large Hadron Collider Insertion Regions 2551
 
  • M. Giovannozzi, F. Borgnolutti, O. S. Brüning, U. Dorda, S. D. Fartoukh, W. Herr, M. Meddahi, E. Todesco, R. Tomas, F. Zimmermann
    CERN, Geneva
  • R. de Maria
    EPFL, Lausanne
 
  In the framework of the studies for the upgrade of the insertions of the CERN Large Hadron Collider, four optical layouts were proposed with the aim of reducing the beta-function at the collision point down to 25 cm. The different candidate layouts are presented. Results from the studies performed on mechanical and dynamic aperture are summarized, together with the evaluation of beam-beam effects. Particular emphasis is given to the comparison of the optics performance, which led to retain two promising layouts for further investigation and development.  
WEPP026 Reliable Operation of the AC Dipole in the LHC 2575
 
  • R. Tomas, S. D. Fartoukh, J. Serrano
    CERN, Geneva
 
  The AC dipole in the LHC will not only provide transverse oscillations without emittance growth but also with a safety guarantee. These two features are due to the adiabaticity of the excitation. However chromaticity and non-linear fields spoil this adiabaticity. This paper assesses the margins of the relevant parameters for a reliable and safe operation of AC dipoles in the LHC.