A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Elsen, Eckhard.

Paper Title Page
MOPP066 Recent Experimental Study of Fast Ion Instability in ATF Damping Ring 697
 
  • N. Terunuma, Y. Honda, T. Naito, J. Urakawa
    KEK, Ibaraki
  • Eckhard. Elsen, G. X. Xia
    DESY, Hamburg
 
  The Fast Ion Instability (FII) is one of the very high priorities of the damping ring R&D for the International Linear Collider (ILC). The Accelerator Test Facility (ATF) in KEK can provide an ILC damping ring-like beam. A specific FII study in ATF has been launched to characterize this phenomenon for the ILC damping ring. A new gas inlet system has been installed recently in the ATF damping ring to control the ion effect. After N2 gas injection into the vacuum chamber in south straight section of the ring, FII has been observed for elevated gas pressures. Beam size blow-up and emittance growth for various fill patterns are presented in this paper and attributed to FII. Comparison between experimental data and simulation results are given as well.  
MOPP068 Simulation Study of Fast Ion Instability in the ILC Damping Ring 703
 
  • G. X. Xia, Eckhard. Elsen
    DESY, Hamburg
 
  The so-called fast ion instability potentially constitutes a performance limitation for the damping ring of the International Linear Collider (ILC). Based on the latest baseline lattice of the ILC damping ring the fast ion instability is simulated using a weak-strong code. Various fill patterns are examined to mitigate the onset of the instability. Feedback mechanisms are explored. The growth time of the fast ion instability is estimated for various vacuum pressures on the basis of the simulated results.