A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Descoeudres, A.

Paper Title Page
MOPP012 DC Breakdown Experiments for CLIC 577
 
  • A. Descoeudres, S. Calatroni, M. Taborelli
    CERN, Geneva
 
  For the production of the Compact Linear Collider (CLIC) RF structures, a material capable of sustaining high electric field, with a low breakdown rate and showing low damages after breakdowns is needed. A DC breakdown study is underway at CERN in order to test candidate materials and surface preparations, and also to have a better understanding of the breakdown mechanism. The saturated breakdown fields of several metals and alloys have been measured, ranging from 100MV/m for Al to 900MV/m for stainless steel, being around 150MV/m for Cu, CuZr and Glidcop, 300MV/m for W, 400MV/m for Mo, Nb and Cr, 650MV/m for V, and 750MV/m for Ti for example. Titanium shows a strong material displacement after breakdowns, while Cu, Mo and stainless steel are more stable. The conditioning speed of Mo can be significantly improved by removing oxides at the surface with a heat treatment, typically at 875°C for 2 hours. DC breakdown rate measurements have been done with Cu and Mo electrodes, showing similar results as in RF experiments: the breakdown probability seems to exponentially increase with the applied field.  
MOPP095 Advanced Experimental Techniques for RF and DC Breakdown Research 775
 
  • J. W. Kovermann
    RWTH, Aachen
  • S. Calatroni, A. Descoeudres, T. Lefevre, W. Wuensch
    CERN, Geneva
 
  Advanced experimental techniques are being developed to do in-situ analysis of DC and RF breakdowns. First measurements with a specially built spectrometer have been made with a DC spark setup at CERN and with CLIC accelerating structures in the 30GHz power test facility. This spectrometer measures the light intensity development during a breakdown for narrow wavelength intervals in the visible and near infrared range which will give information about the involved elements, temperature and plasma parameters and eventually precursors of a breakdown. Planned experiments for X-ray spectroscopy and imaging, measurements of RF-signals and ion and electron energy distribution and infrared imaging of breakdown sites are presented.