A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Delsim-Hashemi, H.

Paper Title Page
MOPC028 Experimental Layout of 30 nm High Harmonic Laser Seeding at FLASH 127
 
  • H. Schlarb, S. Düsterer, J. Feldhaus, T. Laarmann
    DESY, Hamburg
  • A. Azima, J. Boedewadt, H. Delsim-Hashemi, M. Drescher, S. Khan, Th. Maltezopoulos, V. Miltchev, M. Mittenzwey, J. Rossbach, R. Tarkeshian, M. Wieland
    Uni HH, Hamburg
 
  Since 2004, the free-electron laser FLASH at DESY has operated in the Self-Amplified Stimulated Emission mode, delivering to users photon beams with wavelengths between 6.5 nm and 40 nm. In 2009, DESY plans to install a 3.9 GHz RF acceleration section for the production of electron bunches with high peak currents (~kA), but ten times larger pulse durations (~250 fs) compared to the present configuration. The relaxed timing requirements of the new configuration make it possible to externally seed FLASH with high harmonics of an optical laser (sFLASH). The aim of the project is to study the technical feasibility of seeding an FEL at 30 nm with a stability suited for user operation. sFLASH will use 10 m of gap-tunable undulators installed in front of the fixed gap SASE-undulator. A chicane behind the seeding undulators will allow to extract the output radiation for a careful characterisation and for first pump-probe experiments with a resolution in the 10 fs range by combining FEL and seed laser pulses.  
MOPC029 Longitudinal Structure of Electron Bunches at the Micrometer Scale from Spectroscopy of Coherent Transition Radiation 130
 
  • B. Schmidt, C. Behrens, S. Wesch
    DESY, Hamburg
  • H. Delsim-Hashemi, J. Rossbach, P. Schmüser
    Uni HH, Hamburg
 
  At the free electron laser FLASH in Hamburg, a longitudinal bunch compression scheme is used resulting in a longitudinal current profile with a narrow leading spike. Part of this spike is responsible for producing high-intensity short FEL pulses via the SASE process. The width and the structure of the current spike, which are key parameters for the efficiency of the SASE process, are barely accessible to direct measurements in the time domain. Using an infrared multi-stage grating spectrometer, we have studied the spectral composition of coherent transition radiation from single electron bunches. The data show that the 'fundamental width' of the current spike is about 40 fs (fwhm) with prominent substructures down to the 10 fs scale. The intensity fluctuations of coherent radiation in the corresponding wavelength range are strongly correlated to the fluctuations of the FEL pulse energy. Extension of the method to the near infrared regime have revealed micro-structures with characteristic lengths from a few micrometers down to fractions of a micrometer. Their interrelation with the parameters of the electron beam and the compression system have been studied.  
TUPC030 Transverse Electron Beam Size Effect on the Bunch Profile Determination with Coherent Radiation Diagnostics 1113
 
  • O. Grimm, H. Delsim-Hashemi, J. Rossbach
    Uni HH, Hamburg
  • V. Balandin, N. Golubeva
    DESY, Hamburg
 
  Longitudinal diagnostics of electron bunches can be done by measurement of coherent radiation (e.g., in the form of transition radiation) and subsequent extraction of the form factor. By measuring short wavelengths, fine structures in the bunch can be resolved. However, the form factor depends on the three-dimensional charge density distribution, and the usual practice of considering only a one-dimensional line charge in interpreting the radiation spectra is questionable, as the finite transverse extend of the electron bunch can reduce the form factor magnitude at short wavelengths. An experimental study of this issue using a two stage single shot spectrometer has been carried out at the FLASH free-electron laser at DESY, Hamburg. The coherent transition radiation spectra for two beam optics settings were recorded and compared. In one setting the transverse beam size at the transition radiation target screen has been blown up by a factor of about 3.5 compared to the second setting. The ratio of these two spectra shows a suppression of radiation intensity at short wavelengths, as expected from a theoretical calculation. In this paper the result of this study is presented.  
TUPC110 Bunch Diagnostics with Coherent Infrared Undulator Radiation at FLASH 1320
 
  • A. Willner, H. Delsim-Hashemi, O. Grimm, J. Rossbach
    Uni HH, Hamburg
  • B. Schmidt
    DESY, Hamburg
 
  The operation of the FLASH free electron laser at DESY, Hamburg, requires a high electron beam quality, one important parameter being the longitudinal charge distribution. As a new tool for investigations using coherent radiation techniques, FLASH has been equipped with an electromagnetic undulator. The device is tunable up to a maximum K-Value of 44, corresponding to 200 um wavelength at an electron energy of 500 MeV. The emitted radiation has been characterized in a first measurement campaign using a dispersive spectrometer based on reflective blazed gratings and a pyroelectric detector, operated in a Nitrogen-purged atmosphere. This paper will summarize the measurements and the results obtained from a longitudinal diagnostics analysis.