A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Craievich, P.

Paper Title Page
MOPC080 Status of the FERMI@Elettra Photoinjector 247
 
  • M. Trovo, L. Badano, S. Biedron, D. Castronovo, F. Cianciosi, P. Craievich, G. D'Auria, M. B. Danailov, M. Ferianis, S. V. Milton, G. Penco, L. Pivetta, L. Rumiz, D. Wang
    ELETTRA, Basovizza, Trieste
  • H. Badakov, A. Fukasawa, B. D. O'Shea, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • M. Eriksson, D. Kumbaro, F. Lindau
    MAX-lab, Lund
 
  The new FERMI@Elettra photoinjector is presently undergoing high-power testing and characterization at MAX-Lab in Lund Sweden. This effort is a collaboration between Sincrotrone Trieste, MAX-Lab and UCLA. The 1.6-cell RF gun cavity and the focusing solenoid were successfully designed and built by the Particle Beam Physics Laboratory at UCLA, delivered to Sincrotrone Trieste at the beginning of 2008, and installed in the linac tunnel at MAX-Lab. Use of the MAX-Lab facility will allow the FERMI project to progress significantly with the photoinjector while waiting for the completion of the new linac building extension at Sincrotrone Trieste. We report here on the high-power conditioning of the RF cavity and the first beam tests. Furthermore, a preliminary characterization of the 5 MeV beam will also be presented.  
TUPC079 Beam Emittance Measurement for the New Full Energy Injector at ELETTRA 1236
 
  • G. Penco, L. Badano, S. Bassanese, G. Ciani, P. Craievich, S. Di Mitri, M. Ferianis, M. Predonzani, M. Veronese
    ELETTRA, Basovizza, Trieste
  • A. A. Lutman
    DEEI, Trieste
 
  An emittance measurement station was set up and operated with the quadrupole scan technique to characterize the electron beam transverse phase space at the Elettra laboratory. The diagnostic station, based on a YAG:Ce scintillation screen imaged by a CCD digital camera, was installed at the end of the 100 MeV booster pre-injector together with a beam longitudinal structure monitor. This equipment plays an important role for the bunching system optimization and for the optical matching of the injection transfer line to the booster ring. Experimental results and comparison with multi-particle tracking codes simulation are presented in this paper.  
TUPC080 Fermi Low-energy Transverse RF Deflector Cavity 1239
 
  • P. Craievich, S. Biedron, C. Bontoiu, S. Di Mitri, M. Ferianis, M. Veronese
    ELETTRA, Basovizza, Trieste
  • D. Alesini, L. Palumbo
    INFN/LNF, Frascati (Roma)
  • L. Ficcadenti
    Rome University La Sapienza, Roma
  • M. Petronio
    DEEI, Trieste
 
  The layout of FERMI@Elettra will include a transverse S-band RF deflector that will be located after the first bunch compressor (BC1) at 250 MeV. The deflector will operate in a vertical deflecting mode and coupled to a downstream dipole will be used to measure the electron bunch length and in particular to allow time-resolved beam quality measurements such as horizontal slice emittance and slice energy spread. In this paper we discuss the electron bunch deflection at 250 MeV taking into account the principal elements that dominate the selection of the transverse peak voltage specification: the finite transverse emittance, the resolution of OTR screens and the desired number of the slice divisions along the bunch that we wish to observe. The RF deflector proposed here is a frequency scaled version of the 5-cell standing wave SPARC structure.  
TUPP032 Trajectory Jitter and Single Bunch Beam Break Up Instability 1607
 
  • S. Di Mitri, P. Craievich
    ELETTRA, Basovizza, Trieste
  • M. Borland
    ANL, Argonne, Illinois
  • A. Zholents
    LBNL, Berkeley, California
 
  This paper addresses stability issues related to control of the beam break up (BBU) instability in the FERMI@Elettra linac using local trajectory bumps. Analytical study and simulations using the Elegant code are presented. Three different parameters have been used to characterize the BBU, i.e. the projected emittance, the bunch head-to-tail deviation, and the Courant-Snyder invariant for the slice centroid. It is shown that shot-to-shot trajectory jitter in the injector affects the efficiency of the control of the BBU.