A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Cohen, S.

Paper Title Page
MOPP121 Full Real-time Temperature Mapping System for 9-cell ILC-type Cavities 841
 
  • A. Canabal, F. L. Krawczyk, R. J. Roybal, J. D. Sedillo, T. Tajima
    LANL, Los Alamos, New Mexico
  • S. Cohen
    Bira, Albuquerque, New Mexico
  • W. Haynes
    Fermilab, Batavia, Illinois
 
  The mapping of outer-wall temperatures during the vertical test of a superconducting radio-frequency (SRF) cavity has been one of the most successful tools in detecting the cavities’ critical hot spots. However, due to the excessive number of sensors needed, no fixed-type temperature mapping (T-mapping) system that covers all cells has been built for 9-cell cavities. With the consensus that T-mapping analysis is needed in order to improve the yield of high-gradient cavities, a system with a reduced data acquisition time and increased temperature sensitivity, compared to rotating-arm systems, has been developed at Los Alamos National Laboratory. The system consists of ~5,000 100 Ω 1/8W Allen-Bradley resistors placed azimuthally every 10 degrees, a similar number of other resistors and diodes that implement the switching scheme, and data acquisition codes written in Labview. The details of the system and first results are presented and discussed.  
TUPC118 First Data from the Linear Collider Alignment and Survey Project (LiCAS) 1344
 
  • A. Reichold, T. Handford, L. A. Rainbow, M. Tacon, C. Uribe Estrada, D. Urner, S. Q. Yang
    OXFORDphysics, Oxford, Oxon
  • P. J. Brockill, S. Cohen, J. Dale, M. Dawson, M. Jones, G. Moss, R. Wastie
    JAI, Oxford
  • G. Grzelak
    Warsaw University, Warsaw
  • J. Prenting, M. Schloesser
    DESY, Hamburg
 
  The LiCAS project has developed a prototype robotic survey system for rapid and highly accurate surveying of long linear accelerator tunnel networks. It is aimed at the survey of the reference network for the International Linear Collider (ILC). This Rapid Tunnel Reference Surveyor (RTRS) is designed to be an R\&D instrument for evaluating the potential performance of the RTRS concept and its survey technology. The prototype has been commissioned in a test tunnel at DESY with initial calibrations and measurements ongoing. We will report on the results obtained so far and present conclusions for the design of an RTRS suitable for the ILC.