A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Charrondiere, C.

Paper Title Page
WEPD028 Performance of the Superconducting Corrector Magnet Circuits during the Commissioning of the LHC 2470
 
  • W. Venturini Delsolaro, V. Baggiolini, A. Ballarino, B. Bellesia, F. Bordry, A. Cantone, M. P. Casas Lino, C. CastilloTrello, N. Catalan-Lasheras, Z. Charifoulline, C. Charrondiere, G. D'Angelo, K. Dahlerup-Petersen, G. De Rijk, R. Denz, M. Gruwe, V. Kain, M. Karppinen, B. Khomenko, G. Kirby, S. L.N. Le Naour, A. Macpherson, A. Marqueta Barbero, K. H. Mess, M. Modena, R. Mompo, V. Montabonnet, D. Nisbet, V. Parma, M. Pojer, L. Ponce, A. Raimondo, S. Redaelli, V. Remondino, H. Reymond, A. Rijllart, R. I. Saban, S. Sanfilippo, K. M. Schirm, R. Schmidt, A. P. Siemko, M. Solfaroli Camillocci, H. Thiesen, Y. Thurel, A. Vergara-Fernández, A. P. Verweij, R. Wolf, M. Zerlauth
    CERN, Geneva
  • A. Castaneda, I. Romera Ramirez
    CIEMAT, Madrid
  • SF. Feher, R. H. Flora
    Fermilab, Batavia, Illinois
 
  The LHC is a complex machine requiring more than 7400 superconducting corrector magnets distributed along a circumference of 26.7 km. These magnets are powered in 1380 different electrical circuits with currents ranging from 60 A up to 600 A. Among the corrector circuits the 600 A corrector magnets form the most diverse and differentiated magnet circuits. About 60000 high current connections had to be made. A minor fault in a circuit or one of the superconducting connections would have severe consequences for the accelerator operation. All magnets are wound from various types of Nb-Ti superconducting strands, and many contain resistors to by-pass the current in case of the transition to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. In this paper the performance of these magnet circuits is presented, focussing on the quench current and quench behaviour of the magnets. Quench detection and the performance of the electrical interconnects will be dealt with. The results as measured on the entire circuits will be compared to the test results obtained during the reception tests of the individual magnets.  
THPC151 The Post-Mortem Analysis Software Used for the Electrical Circuit Commissioning of the LHC 3345
 
  • H. Reymond, O. O. Andreassen, C. Charrondiere, D. Kudryavtsev, P. R. Malacarne, E. Michel, A. Raimondo, A. Rijllart, R. Schmidt, N. Trofimov
    CERN, Geneva
 
  The hardware commissioning of the LHC has started in the first quarter of 2007, with the sector 7-8. A suite of software tools has been developed to help the experts with the access, visualization and analysis of the result of the tests. Using the experience obtained during this phase and the needs to improve the parallelism and the automation of the electrical circuits commissioning, a new user interface has been defined to have an overview of all pending tests and centralise the access to the different analysis tools. This new structure has been intensely used on sector 4-5 and during this time the test procedures for different types of electrical circuits have been verified, which has also allowed the implementation of new rules and features in the associated software. The hardware commissioning of the electrical circuits enters in a more critical phase in 2008, were the number of the tests executed increases rapidly as test will be performed in parallel on different sectors. This paper presents an overview on the post mortem analysis software, from its beginning as a simple graphical interface to the actual suite of integrated analysis tools.