A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Cassinari, L.

Paper Title Page
MOPD019 Construction and Quality Control of Synchrotron SOLEIL Beam Position Monitors 487
 
  • E. Cenni, M. Canetti, F. Gangini
    RIAL VACUUM S.p. A, Parma
  • J. L. Billaud
    Saint-Gobain C. R.E. E., Cavaillon
  • L. Cassinari, J.-C. Denard, C. Herbeaux
    SOLEIL, Gif-sur-Yvette
 
  SOLEIL is a third generation synchrotron light source located near Paris. Due to the high performance required for SOLEIL’s diagnostics, a special production procedure was tailored. During the production of 131 Beam Position Monitors (BPM) more than 500 feedthroughs were inspected; all of them passed strict tests at different stages of the production: Leak test (< 10-10 mbar l/s), Dimensional control (Displacement <0.050 mm), Vacuum test (Specific Outgassing < 10-12 mbar l/s cm2, Residual Gas Analysis) and Electrical test (Capacitance measure ~8pF, Insulation >50 MΩ, Impedance <0.1 Ω). All the established procedures and tests have been performed in a tight partnership that was more than a simple contractual framework, in which an intensive collaboration led to a knowledge transfer between SOLEIL and Rial Vacuum. The result has been a high percentage of success (few feedthroughs over 500 were replaced) during preliminary tests and a deeper knowledge of “BPM problem solving”; in this article are presented different test procedures to obtain high quality and high performance BPMs.  
WEPC016 Operation Status and Performances Upgrade on SOLEIL Storage Ring 2022
 
  • J.-M. Filhol, J. C. Besson, F. Bouvet, P. Brunelle, L. Cassinari, M.-E. Couprie, J.-C. Denard, C. Herbeaux, J.-F. Lamarre, J.-P. Lavieville, P. Lebasque, M.-P. Level, A. Loulergue, P. Marchand, A. Nadji, L. S. Nadolski, R. Nagaoka, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette
 
  SOLEIL is the French 2.75 GeV third generation synchrotron light source delivering beam to users since January 2007. Beginning of 2008 up to 13 beam-lines are taking beam, 7 from insertion devices (IDs), 2 from IR ports, and 4 from dipole ports, and 6 of them are open to external Users. Users have a full control of their IDs. With a 300 mA stored beam current in multi-bunch filling pattern, and position stability in the few micron range, the main target performances have been reached. A beam of 50 mA in 8 bunches was delivered to users for the first time in December 2007 for time structure experiments. Operation and performance status will first be given, namely subsystem behaviour (RF, vacuum, …), beam optics, orbit stability, beam lifetime, and operation statistics. Then the main objectives for 2008 will be reviewed: delivery of 4000 hours of user beam time, installation and commissioning of a second cryomodule for reaching the 500 mA current target, construction and installation of 6 new IDs leading to a total number of 17, improvement of the orbit stability with a fast orbit feedback complementary to the slow orbit one, and preparation for top-up operation.  
THPC065 Orbit Stability Status and Improvement at SOLEIL 3134
 
  • L. S. Nadolski, J. C. Besson, F. Bouvet, P. Brunelle, L. Cassinari, J.-C. Denard, J.-M. Filhol, N. Hubert, J.-F. Lamarre, A. Loulergue, A. Nadji, D. Pedeau, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette
 
  SOLEIL is a 2.75 GeV third generation synchrotron light source delivering photons to beam-lines since January 2007. Stability of the beam-line source points is crucial for the user experiments. Typically this stability has to be below one tenth of the transverse beam sizes. This is challenging especially in the vertical plane leading to sub-micrometer values. This paper will describe the position stability achieved today without and with the slow orbit feedback. Impact of different noise sources and present limitations will be described. To end an improvement strategy will be given for short and medium terms.  
THPC115 Commissioning of SOLEIL Fast Orbit Feedback system 3248
 
  • N. Hubert, L. Cassinari, J.-C. Denard, J.-M. Filhol, N. Leclercq, A. Nadji, L. S. Nadolski, D. Pedeau
    SOLEIL, Gif-sur-Yvette
 
  The Fast Orbit Feedback system at SOLEIL is fully integrated into the BPM system equipped with Libera modules. Indeed, the correction algorithm has been embedded into the Libera FPGA which directly drives the power supplies of dedicated air coil correctors. The beam position measurements of the 120 BPMs are distributed around the storage ring by a dedicated network. Then, the correction is computed and applied at a rate of 10 kHz to 48 correctors installed over stainless-steel bellows, on each side of every straight section. The BPM system has been operational for some time. The fast orbit feedback system is in its commissioning phase. The design and first results of the latter are reported.