A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Caretta, O.

Paper Title Page
MOPC087 The MERIT (nTOF-11) High Intensity Liquid Mercury Target Experiment at the CERN PS 262
 
  • I. Efthymiopoulos, A. Fabich, A. Grudiev, F. Haug, J. Lettry, M. Palm, H. Pernegger, R. R. Steerenberg
    CERN, Geneva
  • J. R.J. Bennett
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • O. Caretta, P. Loveridge
    STFC/RAL, Chilton, Didcot, Oxon
  • A. J. Carroll, V. B. Graves, P. T. Spampinato
    ORNL, Oak Ridge, Tennessee
  • H. G. Kirk, H. Park, T. Tsang
    BNL, Upton, Long Island, New York
  • K. T. McDonald
    PU, Princeton, New Jersey
  • N. V. Mokhov, S. I. Striganov
    Fermilab, Batavia, Illinois
 
  The MERIT (nTOF-11) experiment is a proof-of-principle test of a target system for high power proton beams to be used as a front-end for a neutrino factory complex or a muon collider. The experiment took data in autumn 2007 using the fast extracted beam from the CERN Proton Synchrotron (PS) with a maximum intensity of about 30TP per pulse. The target system, based on a free mercury jet, is capable of intercepting a 4-MW proton beam inside a 15-T magnetic field Such a field is required to capture the low-energy secondary pions which will provide the source of the required intense muon beams. Particle detectors have been installed around the target setup in order to measure the secondary particle flux out of the target and probe cavitation effects in the mercury jet when hit with variable intensity beams. The data analysis is ongoing: the results presented at this conference will demonstrate the validity of the liquid mercury target concept.

For the MERIT collaboration.

 
WEPP161 Preliminary Experiments on a Fluidised Powder Target 2862
 
  • O. Caretta, C. J. Densham
    STFC/RAL, Chilton, Didcot, Oxon
  • T. W. Davies
    Exeter University, Exeter, Devon
  • R. M. Woods
    Gericke LTD, Ashton-under-Lyne
 
  In order to achieve higher resolutions the next generation of accelerator facilities is designed to operate with beam powers orders of magnitude higher than that handled by the current technology. So it is believed that the existing target and beam dump designs will be unsuitable to survive beam interactions depositing powers in the order of several megawatts. Good target design is important for the physics yield from experiments and crucial to the reliable operation of the facility. Furthermore the choice of target is strongly associated with the safety and cost of design (i.e., economic viability) of the entire facility. This article proposes a new target technology based on fluidised powder believed to be suitable for application at higher beam powers whilst avoiding some of the problems associated with other technologies. A conceptual system design for the application of the fluidised powder target to the requirements of a future neutrino facility, is presented. The preliminary experimental results presented, show the effect of some of the parameters which are expected to determine the performance, physics yields and reliability of operation of the new powder system.  
WEPP169 The MERIT High-power Target Experiment at the CERN PS 2886
 
  • H. G. Kirk, H. Park, T. Tsang
    BNL, Upton, Long Island, New York
  • J. R.J. Bennett
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • O. Caretta, P. Loveridge
    STFC/RAL, Chilton, Didcot, Oxon
  • A. J. Carroll, V. B. Graves, P. T. Spampinato
    ORNL, Oak Ridge, Tennessee
  • I. Efthymiopoulos, A. Fabich, F. Haug, J. Lettry, M. Palm, H. Pereira
    CERN, Geneva
  • K. T. McDonald
    PU, Princeton, New Jersey
  • N. V. Mokhov, S. I. Striganov
    Fermilab, Batavia, Illinois
 
  The MERIT experiment was designed as a proof-of-principle test of a target system based on a free mercury jet inside a 15-T solenoid that is capable of sustaining proton beam powers of up to 4MW. The experiment was run at CERN in the fall of 2007. We describe the results of the tests and their implications.