A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bruni, C.

Paper Title Page
MOPC005 The ARC-EN-CIEL Radiation Sources 73
 
  • M.-E. Couprie, M. Labat
    CEA, Gif-sur-Yvette
  • C. Benabderrahmane, O. V. Chubar, G. Lambert, A. Loulergue, O. Marcouillé
    SOLEIL, Gif-sur-Yvette
  • C. Bruni
    LAL, Orsay
  • L. Giannessi
    ENEA C. R. Frascati, Frascati (Roma)
 
  The ARC-EN-CIEL project proposes a panoply of light sources for the scientific community on a 1 GeV superconducting LINAC (phase 2) on which two ERL loops (1 and 2 GeV) are added in phase 3. LEL1 (200-1.5 nm), LEL2 (10-0.5 nm) and LEL4 (2-0.2 nm) are three kHz High Gain Harmonic Generation Free Electron Laser sources seeded with the High order Harmonics generated in Gas, with 100-30 FWHM pulses. A collaboration, which has been set-up with the SCSS Prototype Accelerator in Japan for test this key concept of ARC-EN-CIEL, has led to the experimental demonstration of the seeding with HHG and the observation up the 7th non linear harmonic with a seed at 160 nm. Besides. LEL3 (40-8 nm) installed on the 1 GeV loop is a MHz FEL oscillator providing higher average power and brilliance. In addition, in vacuum undulator spontaneous emission source extend the spectral range above 10 keV and intense THz radiation is generated by edge radiation of bending magnets. Optimisations and light sources characteristics are described.  
MOPC023 ARC-EN-CIEL Beam Dynamics 115
 
  • A. Loulergue, M.-E. Couprie
    SOLEIL, Gif-sur-Yvette
  • C. Bruni
    LAL, Orsay
 
  ARC-EN-CIEL project is based on a CW 1.3 GHz superconducting linac accelerator delivering high charge, subpicosecond and low emittance electron bunches at high repetition rate. According to the electron energy, it provides tunable light source of high brightness in the VUV to soft X-ray wavelength domain. The project will evolve into three phases: first and second phases are based on high brightness single pass SC linac configuration with a low average current (few μA), while third phase comports recirculation loops to increase the average current (up to 100 mA). This paper deals with electron beam dynamics issues for the single pass configuration in the two first phases from the RF gun to undulators including magnetic compression stages. In the ERL configuration of the third phase, the accelerator scheme and focusing are investigated in order to take into account collective effects as Beam Break Up instability.  
TUPP112 The RADIOTHOMX Project 1785
 
  • C. Bruni, F. Couchot, Y. Fedala, J. Haissinski, M. Lacroix, R. Roux, V. Variola, Z. F. Zomer
    LAL, Orsay
  • N. Artemiev
    LOA, Palaiseau
  • Ph. Balcou, E. Cormier, S. Montant, M. C. Nadeau
    CELIA, Talence
  • JP. Brasile, A. S. Chauchat, C. Simonboisson
    THALES, Colombes
  • R. Czarny
    Thales Laser SA, Orsay
  • P. Gladkikh
    NSC/KIPT, Kharkov
 
  The goal of this project is to develop a compact device, which could produce an intense flux of monochromatic X-rays for medical applications. It is based on Compton back-scattering resulting from collisions between laser pulses and relativistic electron bunches. Intense laser beams can be obtained with a high gain Fabry-Perot cavity coupled with a high average power fiber laser. Such a scheme is going to be developed by CELIA and LAL laboratories. The accelerator design to produce high repetition rate electron bunches at 50 MeV is under study. Two possibilities are being investigated: either a linear accelerator combined with a storage ring operating at an injection frequency high enough to preserve the electron beam characteristics or a high average current ERL. Both accelerator configurations aiming at producing X-ray fluxes higher than 1012 photons/s will be presented.