A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bonnes, U.

Paper Title Page
TUPC138 Development of a New Low-Level RF-Control-System for the S-DALINAC 1389
 
  • A. Araz, U. Bonnes, R. Eichhorn, M. Konrad, M. Platz, A. Richter
    TU Darmstadt, Darmstadt
  • U. Laier
    GSI, Darmstadt
  • R. Stassen
    FZJ, Jülich
 
  The Superconducting DArmstadt electron LINear ACcelerator S-DALINAC has a maximum energy of 130 MeV and beam currents of up to 60 μA. To reach this energy conveniently in cw, superconducting cavities with a high Q at a frequency of 3 GHz are used. In order to achieve minimal energy spread, the amplitude and phase the cavities have to be controlled strictly in order to compensat the impact of microphonic perturbations. The existing analog rf control system based on a self-exited loop, converts the 3 GHz signals down to the base band. This concept will also be followed by the new digital system currently under design. It is based on an FPGA in the low frequency part, giving a great flexibility in the control algorithm and providing additional diagnostics. For example it is possible to change the operational mode between self-exited loop and generator driven resonator within a second. We will report on the design concept, the status and the latest results measured with a prototype, including different control algorithms as well as beam loading effects.  
TUPD022 Electron Beam Polarimetry at the S-DALINAC 1476
 
  • R. Barday, U. Bonnes, C. Eckardt, R. Eichhorn, J. Enders, C. Heßler, J. Kalben, Y. Poltoratska
    TU Darmstadt, Darmstadt
  • W. F.O. Müller, B. Steiner, T. Weiland
    TEMF, Darmstadt
 
  It is planned to carry out experiments at the Superconducting Darmstadt Linear Accelerator S-DALINAC with both polarized electron and photon beams at the energy of the electron beam between 10 and 130 MeV. In order to extract asymmetry from these experiments the absolute degree of the electron beam polarization needs to be known. We present the existing and planned polarimeters at the source of polarized electrons and the experimental sites, especially a 100 keV Mott polarimeter and Möller polarimeter for 15-130 MeV electrons.  
TUPD027 Commissioning of the Offline-teststand for the S-DALINAC Polarized Injector SPIN 1482
 
  • C. Heßler, R. Barday, U. Bonnes, M. Brunken, C. Eckardt, R. Eichhorn, J. Enders, M. Platz, Y. Poltoratska, M. Roth
    TU Darmstadt, Darmstadt
  • W. Ackermann, W. F.O. Müller, B. Steiner, T. Weiland
    TEMF, Darmstadt
  • K. Aulenbacher
    IKP, Mainz
 
  At the superconducting Darmstadt linear electron accelerator S-DALINAC a new injector for polarized electrons is under development. For this purpose an off-line test stand has been constructed. It consists of the source of polarized electrons and a test beamline including a Wien filter for spin manipulation, a Mott polarimeter for polarization measurement and various beam steering and diagnostic elements. The polarized electron beam is produced by photoemission from a strained GaAs cathode. We report on the status of this project and present first results of the measurements of the beam properties. We also give an outlook on the upcoming installation of SPIN at the S-DALINAC.