A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bate, R.

Paper Title Page
MOPP125 A Superconducting RF Vertical Test Facility at Daresbury Laboratory 850
 
  • P. A. Corlett, R. Bate, C. D. Beard, B. D. Fell, P. Goudket, S. M. Pattalwar
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. K. Ambattu, G. Burt, A. C. Dexter, M. I. Tahir
    Cockcroft Institute, Lancaster University, Lancaster
 
  A superconducting RF vertical test facility (VTF) has been constructed at Daresbury Laboratory for the testing of superconducting RF cavities at 2K. When fully operational, the facility will be capable of testing a 9-cell 1.3 GHz Tesla type cavity. The facility is initially to be configured to perform phase synchronisation experiments between a pair of single cell 3.9GHz ILC crab cavities. These experiments require the cavities to operate at the same frequency; therefore a tuning mechanism has been integrated into the system. The system is described, and data from the initial operation of the facility is presented.  
MOPP141 Commissioning of the ERLP SRF Systems at Daresbury Laboratory 889
 
  • P. A. McIntosh, R. Bate, R. K. Buckley, S. R. Buckley, P. A. Corlett, A. J. Moss, J. F. Orrett, S. M. Pattalwar, A. E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • F. G. Gabriel
    FZD, Dresden
  • A. R. Goulden
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
  • P. vom Stein
    ACCEL, Bergisch Gladbach
 
  The Energy Recovery Linac Prototype (ERLP) has been installed at Daresbury Laboratory and its baseline commissioning completed. The SRF systems for ERLP comprise two 9-cell, 1.3 GHz accelerating cavities in the injector (or Booster) cryomodule, which provide a nominal energy gain of 8 MeV for the injected 350 keV beam from the photo-injector. The beam is then accelerated in an identical two cavity cryomodule in the energy recovery main Linac, giving a final ERLP energy of 35 MeV. Each SRF accelerating cavity is powered by commercially available Inductive Output Tubes (IOTs) and the analog LLRF control system is identical to that employed on the ELBE facility at FZD Rossendorf. This paper details the commissioning experience gained for these systems and highlights the ultimate performance achieved.