A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Barth, W.

Paper Title Page
THPP021 Status of the Unilac-upgrade Programme for the Heavy Element Research at GSI-Ship 3416
 
  • P. Gerhard, W. Barth, L. A. Dahl, K. Tinschert
    GSI, Darmstadt
  • A. Schempp
    IAP, Frankfurt am Main
 
  For more than 30 years the heavy-element research using the velocity separator SHIP is one of the major experiments at GSIs heavy ion linear accelerator UNILAC. On of the major contributions which led to the discovery of six new elements since 1981 is the perpetual effort to increase the beam intensity. Since the early 1990's the beam current available was raised significantly by a number of improvements concerning the source, the LEBT and the accelerator. The next steps are scheduled for 2009 and include an upgrade of the Radio Frequency Quadrupole-accelerator (RFQ) and a new superconducting 28 GHz-ECR ion source. The new RFQ will allow higher duty factors up to 100% and improve the longitudinal beam quality as well as the beam transmission. The new ion source will provide an increase in beam intensity and simultaneously higher charge states. The new source will be installed in addition to the existing one, therefore a second LEBT-system has to be designed and integrated into the High Charge State Injector. This paper presents the status quo of both the RFQ and the ion source upgrade and will provide technical data.  
THPP037 A Decelerator for Heavy Highly Charge Ions at HITRAP 3449
 
  • J. Pfister, B. Hofmann, U. Ratzinger, A. Schempp
    IAP, Frankfurt am Main
  • W. Barth, L. A. Dahl, P. Gerhard, O. K. Kester, W. Quint, T. Stoehlker
    GSI, Darmstadt
 
  The heavy highly charged ion trap (HITRAP) project at GSI is in the commissioning phase. Highly charged ions up to U92+ provided by the GSI accelerator facility will be decelerated and subsequently injected into a large Penning trap for further cooling almost to rest. A combination of an IH- and an RFQ-structure decelerates the ions from 4 MeV/u down to 6 keV/u. In front of the decelerator a double drift-buncher-system provides for phase focusing and a final de-buncher integrated in the RFQ-tank reduces the energy spread in order to improve the efficiency for beam capture in the cooler trap. This contribution concentrates on the beam dynamics simulations and corresponding measurements in the first commissioning beam times.