A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Angelova, G.

Paper Title Page
TUPC114 Results from the Optical Replica Experiments in FLASH 1332
 
  • V. G. Ziemann, G. Angelova
    UU/ISV, Uppsala
  • J. Boedewadt, S. Khan, A. Winter
    Uni HH, Hamburg
  • M. Hamberg, M. Larsson, P. M. Salen, P. van der Meulen
    FYSIKUM, AlbaNova, Stockholm University, Stockholm
  • F. Loehl, E. Saldin, H. Schlarb, E. Schneidmiller, M. V. Yurkov
    DESY, Hamburg
  • A. Meseck
    BESSY GmbH, Berlin
 
  We present experimental results from the optical replica synthesizer, a novel device to diagnose sub-ps electron bunches by creating a coherent optical pulse in the infrared that has the envelope of the electron bunch and analyzing the latter by frequency resolved optical gating methods. Such a device was recently installed in FLASH at DESY. During an experiment period the spatial and temporal overlap of a several ps long electron bunch and a 200 fs laser pulse were achieved within an undulator. Coherent transition radiation due to the induced micro-bunching was observed on a silver-coated silicon screen and varying the timing between electrons and laser pulse produced two-dimensional images of the slices as a function of the longitudinal position within the electron bunch. In a second experiment the strongly compressed electron bunch is modulated by a laser pulse lengthened to about 2 ps and replica pulses that are emitted from a second undulator are observed and diagnosed by frequency resolved optical gating methods.  
WEPP077 The XFEL Laser Heater 2695
 
  • V. G. Ziemann, G. Angelova
    UU/ISV, Uppsala
  • M. Dohlus, Y. A. Kot
    DESY, Hamburg
 
  The high-brilliance photo-cathode gun foreseen for the X-FEL will provide beams with extremely small momentum spread that will make the beam susceptible to micro-bunching instabilities which will spoil SASE operation. It is therefore desirable to increase the momentum spread to a level that prevents these instabilties but still is compatible with SASE operation. The laser heater will achive this by superimposing a transversely polarized laser and the electron beam in a properly tuned undulator, thereby producing a momentum modulation that is smeared out in a dogleg chicane to obtain the desired momentum spread increase. We present the initial design and layout of the laser heater system for the X-FEL in Hamburg.