A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Afanasev, A.

Paper Title Page
WEPP147 Aberration-free Muon Transport Line for Extreme Ionization Cooling: a Study of Epicyclic Helical Channel 2833
 
  • A. Afanasev, R. P. Johnson
    Muons, Inc, Batavia
  • Y. S. Derbenev
    Jefferson Lab, Newport News, Virginia
 
  Once the normalized transverse emittances of a muon beam have been cooled to some hundreds of microns, new techniques such as Parametric-resonance Ionization Cooling and Reverse Emittance Exchange can be used to focus the beam very tightly on beryllium energy absorbers for further transverse emittance reduction. The transport lines for these techniques have stringent requirements for the betatron tunes so that resonance conditions are properly controlled and for the dispersion function so that the longitudinal emittance can be controlled by emittance exchange using wedge-shaped absorbers. The extreme angular divergence of the beam at the absorbers implies large beam extension between the absorbers such that these techniques are very sensitive to chromatic and spherical aberrations. In this work we describe general and specific solutions to the problem of compensating these aberrations for these new muon cooling channels.