A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Adolphsen, C.

Paper Title Page
TUPC076 TTF HOM Data Analysis with Curve Fitting Method 1227
 
  • S. Pei, C. Adolphsen, K. L.F. Bane, Z. Li, J. C. Smith
    SLAC, Menlo Park, California
 
  To investigate the possibility of using HOM signal induced in SC cavities as beam and cavity diagnostics, experiments and analyses based on SVD have been done, which are very successful. In this paper, we described one new method based on curve fitting to analyze the HOM signal data, some results have been obtained. The new method can be used to extract the HOM mode frequency, Q and relative phase from the data. On the other hand, this method can also be used to find the HOM mode center, polarization axis, mode axis along the cavity, while careful handling of beam timing information need to be considered in analysis. Comparing with SVD, this method is more physical, and can also be used in the beam diagnostic data analysis to obtain the beam position and beam trajectory angle.  
TUPP019 Wakefield and RF Kicks due to Coupler Asymmetry in TESLA-type Accelerating Cavities 1571
 
  • K. L.F. Bane, C. Adolphsen, Z. Li
    SLAC, Menlo Park, California
  • M. Dohlus, I. Zagorodnov
    DESY, Hamburg
  • E. Gjonaj, T. Weiland
    TEMF, Darmstadt
  • I. G. Gonin, A. Lunin, N. Solyak, V. P. Yakovlev
    Fermilab, Batavia, Illinois
 
  In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate asymmetries in the fields that will kick the beam and tend to degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental and higher mode couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, due to (the asymmetries in) the fundamental RF fields and the other, due to transverse wakefields that are generated even when the beam is on axis. For the ILC configuration we numerically and analytically study both types of kicks and their effect on beam emittance. For the wakefield effect this is quite challenging since the bunches are very short (rms length of 300 microns), the cavity is very long (~1 m), and the distance to steady-state is even longer (~6 m). Finally, we study changes in the coupler design that can greatly reduce the effect.