

Beam Delivery System in the ILC Grahame A. Blair EPAC06 Edinburgh 28th June 2006

- Introduction
- SLC
- GDE Baseline concept
- Some key sub-systems
- ESA/FFTB/ATF2
- Outlook + Summary

ILC parameters

		min		nominal		max	
Bunch charge	N	1	-	2	-	2	$\times 10^{10}$
Number of bunches	n_b	1330	-	2820	-	5640	
Linac bunch interval	t_b	154	-	308	-	461	ns
Bunch length	σ_z	150	-	300	-	500	μm
Vert.emit.	$\gamma \epsilon_y^*$	0.03	-	0.04	-	0.08	mm∙mrad
IP beta (500GeV)	β_x^*	10	-	21	-	21	mm
	β_y^*	0.2	-	0.4	-	0.4	mm
IP beta (1TeV)	β_x^*	10	-	30	-	30	mm
	β_y^*	0.2	-	0.3	-	0.6	mm

BDS must:

- Focus the beam to size of about 500 (x) \times 5 (y) nm at IP
- Collimate beam halo
- Monitor the luminosity spectrum and polarization
- Measure incoming beam properties to allow tuning of the machine
- Protect detector and beamline components against errant beams
- Extract disrupted beams and safely transport to beam dumps

Stanford Linear Collider (SLC)

	Design	Achieved	Units
Beam charge	7.2×10 ¹⁰	4.2×10 ¹⁰	e [±] /bunch
Rep Rate	180	120	Hz
FF ε _x	4.2×10 ⁻⁵	5.2×10 ⁻⁵	m rad
FF ε _y	4.2×10 ⁻⁵	1.0×10 ⁻⁵	m rad
IP σ _x	1.65	1.4	μm
IP σ _y	1.65	0.7	μm
Pinch Factor	220%	220%	Hd
Luminosity	6×10 ³⁰	3×10 ³⁰	cm ⁻² s ⁻¹

- 1992-1998
- first LC
- 45 GeV beams
- 300 Z°'s per hour
- e⁻ polarisation of 80%
- Many of today's ILC experts were involved in getting SLC to work
- Many important LC lessons learnt: 5

BDS: Lessons from the SLC

BDS	SLC
Precision diagnostics essential	> 60 wire scanners were needed
Automated diagnostics	long term history + correlations
Feedback system essential	> 50 needed for > 250 beam parameters.
Innovative tuning procedures	beam-based alignment, β-match
SR must be minimised; implications for high E.	~30% luminosity dilution in the FF was due to SR in the CCS bends.
New FF design	FF optimised to reduce higher order aberrations
The most difficult problems will almost always be unexpected	They were

Beam halo & collimation

1e-10

1e-11

1e-12

-2000

-1500

-1000

Path length, m

-500

0

Smallest collimator gaps are ±0.6mm with tail folding octupoles and ±0.2mm without them.

Dealing with muons in BDS

Assuming 0.001 of the beam is collimated, two tunnelfilling spoilers are needed to keep the number of muon/pulse train hitting detector below 10.

4.5m

В

2cm

0.6m

Spoiler should either:

- be able to survive at least 2 direct-hits from ILC bunch
- or be "consumable"

Both ideas have been considered:

MOPLS068

"permanent"

"consumable" Frisch et al.

Picture from beam damage experiment at FFTB. The beam was 30GeV, $3-20\times10^9$ e-, 1mm bunch length, s~45-200um². Test sample is Cu, 1.4mm thick. Damage was observed for densities > 7×10^{14} e⁻/cm². Picture is for 6×10^{15} e⁻/cm² 12

Spoiler Wakefield Studies

- Geometric wake-fields
- Resistive-wall wake-fields
- Benchmarking against simulation codes

Survivability

Deflection angle Measured downstream with BPMs to give measure of Wake-field kick

MOPLS070,071

13 Watson et al.

Parameter	SLAC ESA	ILC-500
Repetition Rate	10 (up to 30) Hz	5 Hz
Energy	28.5 GeV	250 GeV
e ⁻ Polarization	(85%)	>80%
Train Length	Single bunch; (up to 400 ns possible)	1 ms
Microbunch spacing	20-400 ns	337 ns
Bunches per train	1 (or 2)	2820
Bunch Charge	2.0 x 10 ¹⁰	2.0 x 10 ¹⁰
Energy Spread	0.15%	0.1%

End Station A

Other Beam Tests in ESA

- 1. BPM test stations
 - Linac BPMs, nano-BPMs
- 2. IP BPMs/kickers (necessary for fast inter-train and intra-train feedbacks)
 - Sensitivity to backgrounds, rf pickup
- 3. EMI impact on beam instrumentation or Detector electronics ?
 - Plans to characterize EMI along ESA beamline in progress using antennas and fast scopes
- 4. Bunch length and longitudinal profile measurements
 - electro-optic, Smith-Purcell, coherent transition radiation
- 5. Spray beam or fixed target to mimic pairs, beamsstrahlung, disrupted beam
 - for testing synchrotron stripe energy spectrometer, IP BPMs, BEAMCAL
 White et al. THPCH089

Woods et al.

MOPLS067

Beam Physics Measurements

Precision beam measurements are needed for ILC physics.

• Very accurate energy spectrometry is required (~10⁻⁴)

• cavity BPM system at the SLAC End Station A

Watson et al. TUPCH105

- Polarized beams important for ILC physics
- $P(e^{-})$ ~ 90% and $P(e^{+})$ up to ~60%.
- strong programme of R&D is underway on the spin tracking issues.
- Measurement of the polarisation will be made both upstream and downstream of IP using Compton polarimeters

K. Moffeit et al.SLAC-PUB-11322, N. Meyners presentation at LCWS05:

Moortgat-Pick et al. WEPLS032

Skew Correction

4-skew quads to minimise Horizontal-vertical coupling 4-laser-wire IPs, each measuring Vertical and horizontal spot-size quads to minimise Minimum vertical spot-size ~ 1 μm

BDS Laser-wire Issues

- Electron spot-sizes can (eventually) approach ~1µm in 1 TeV machine
 - laser waist should be smaller than this for emittance measurement
 - R&D programme on-going at ATF to address this
- 4 Vertical and Horizontal (ie 2-d) LW stations required
 - •R&D programme at PETRA to address this
- Other machine errors may dominate emittance measurement
 - beam jitter, residual dispersion, beta-function error,
- Intra-train scanning will require ultra-fast laser scanning techniques
- Extraction of signal best to use photons:

descon, Fri Jun 16 22:58:02 BST 2006

BDSIM input file : /home/descor/BDSIM/BEAN_

Diagnostic Chicane

Summary of first of BDS:

ILC intratrain simulation

ILC intratrain feedback (IP position and angle optimization), simulated with realistic errors in the linac and "banana" bunches, show Lumi ~2×10³⁴ (2/3 of design). Studies continue.

Luminosity through bunch train showing effects of position/angle scans (small). Noisy for first ~100 bunches (HOM's).

Injection Error (RMS/s_y): 0.2, 0.5, 1.0 MOPLS122,3 Burrows et al.

- Setup planned at KEK
- Red lines: Distance meter.
- Multilateration measure 6D coord. of A with respect to B.

THPCH090 Urner et al.

IP Stabilisation + BDS alignment

BDS alignment

IR Region layout

'Large' crossing angle (14 mrad)

a common girder

that is supported inside a single cryostat housing.

'Small' crossing angle (~2 mrad)

- Incoming and outoing beams share magnets close to the IP;
- \rightarrow less flexibility in design and minimisation of backgrounds
- Less dependence on crab-cavity
- Improved detector hermeticity at forward angles

Payet et al. MOPLS060

A head-on scheme (zero crossing angle) is also currently being studied.

Extraction line Full Simulations

20 mrad

2mrad

Optimisation ongoing

Crab crossing

$$\sigma_{x, projected} \approx \sqrt{\sigma_x^2 + \phi_c^2 \sigma_z^2}$$
$$\approx \phi_c \sigma_z$$
$$= 20 \text{mr} \times 100 \mu \text{m} \approx 2 \mu \text{m}$$

need one or two multi-cell cavities ~15m from IP

electron bu	inch			Phase error	(degrees)
	ΔΧ	<	Crossing angle	1.3GHz	3.9GHz
positron bu	PCA ····		2mrad	0.222	0.665
Interaction *** point		10mrad	0.044	0.133	
		20mrad	0.022	0.066	
Burt et al.	MOPCH163	MOPLS075			

Beam dump for 18MW beam

- Water vortex
- Window, 1mm thin, ~30cm diameter hemisphere
- Raster beam with dipole coils to avoid water boiling
- Deal with H, O, catalytic recombination
- Gas dump also being studied
- 3MW beamstrahlung dumps near IR

FF with local chromatic correction

- Chromaticity is cancelled <u>locally</u> by two sextupoles interleaved with FD, a bend upstream generates dispersion across FD
- Geometric aberrations of the FD sextupoles are cancelled by two more sextupoles placed in phase with them and upstream of the bend

- Can operate with 2.5 TeV beams (for 3 ~ 5 TeV cms)
- 4.3 meter L* (twice 1999 design)
- Improved bandwidth

Raimondi+Seryi Phys.Rev.Lett.86:3779-3782,2001

Final Focus Test

Beam

- Started operation at SLAC in 1993
- Aimed at 60 nm spot-sizes
- Eventually achieved:
 - 1.7 μ m (σ_x) × 75nm (σ_y), Ground motion?

	SLC	FFTB	ILC
E _{beam} (GeV)	45.6	46.6	250
σ _E /Ε (%)	0.25	0.25	0.1
N _{e-} (×10 ¹⁰)	4.2	1	2
σ _y (nm)	800	60	5.7
$\gamma \varepsilon_{y}$ (m-rad)	1×10 ⁻⁵	3×10 ⁻⁶	4×10 ⁻⁸
Asp. ratio x/y	2.5	16	115
σ _z (mm)	~1	~1	0.3

Final Focus Test Beam

A Prototype ILC Final Focus system:

- Used "conventional" FF chromatic correction.
- Pole-faces of the final quads were fabricated to $\pm 2 \ \mu m$ and the magnet strength stability for critical elements was 10⁻⁵.
- A cavity BPM with nm pulse-to-pulse resolution at the IP.
- "Shintake-monitor" (now being upgraded for ATF2)

ATF/ATF2

Present Research Programmes at ATF

- 1. Pol. Positron generation R&D at EXT (ended June 2005)
- 2. Laser wire R&D in Damping Ring (Kyoto University)
- 3. High quality electron beam generation by photo-cathode RF Gun (Waseda University)
- 4. X-SR Monitor R&D (University of Tokyo)
- 5. ODR R&D (Tomusk University)
- 6. Beam Based Alignment R&D
- 7. Nano-BPM project of SLAC, LLNL and LBNL
- 8. Nano-BPM project of KEK
- 9. FONT project (UK Institutes)
- 10. Laser Wire project at EXT (UK Institutes)
- 11. Fast Kicker Development project (DESY, SLAC, LLNL)
- 12. Fast Ion Instability Research
- 13. Multi-bunch Instability Study

40

ATF2: The next step on the nm trail:

	SLC	FFTB	ATF2	ILC
E _{beam} (GeV)	45.6	46.6	1.3	250
σ _E /Ε (%)	0.25	0.25	0.1	0.1
N _{e-} (×10 ¹⁰)	4.2	1	1-2	2
σ _y (nm)	800	60	37	5.7
$\gamma \varepsilon_{y}$ (m-rad)	1×10 ⁻⁵	3×10 ⁻⁶	3×10 ⁻⁸	4×10 ⁻⁸
Asp. ratio x/y	2.5	16	13	115
σ _z (mm)	~1	~1	~5	0.3

- Use new FF optics verification of system
- Extract ILC-like train from DR using fast kickers
- Commission ILC-like diagnostics + feedback
- Train next generation of accelerator physicists + engineers

Advanced beam instrumentation at ATF2

- BSM to confirm 35nm beam size
- nano-BPM at IP to see the nm stability
- Laser-wire to tune the beam
- Cavity BPMs to measure the orbit
- Movers, active stabilization, alignment system
- Intratrain feedback, kickers to produce
 ILC-like train

Laser-wire beam-size Monitor (UK group), low-f optics

Cavity BPMs with 2nm resolution, for use at the IP (KEK)

IP Beam-size monitor (BSM) (Tokyo U./KEK, SLAC, UK)

FONT – UK group

Higher Energy Issues

ILC BDS has been optimised for 0.5 -1 TeV CMS. If need to extend to multi-TeV :

- a crossing angle of about 20 mrad is required
- any horizontal bend between the high energy end of the linac and the BDS should be less than 2 mrad.
- There should be zero vertical bend.
- The final stages of the linac should be laserstraight; this will enable extension of the BDS into the linac tunnel, in case it proves necessary.

Many thanks to:

- The ILC BDS team; especially A. Seryi, D. Angal-Kalinin, M. Woodley for input.
- PPARC/CCLRC LC-ABD collaboration.
- All collaborators at the ATF, ESA, ...
- Everyone whose results I have used

Further background:

- ILC Baseline Conceptual Design: http://www.linearcollider.org/wiki/
- A. Seryi lecture at ILC summer school 2006.

SUMMARY

- ILC BDS is in good shape, with feasible designs for several crossing angles.
- Strong international R&D in many of the key issues for beam diagnostics, feedback, and control.
- We look forward to a vigorous collaboration at ATF2 to achieve 37nm spot-sizes for extended periods.
- Full simulations are now maturing and will give major input to the ILC TDR phase.
- Still lots to do...