Laser and accelerators

Holger Schlarb DESY, Hamburg

- Photoinjector lasers
- Laser heater
- ESASE / Attosecond generation
- HHG
- Synchronization

Lasers for FELs

Generic layout of single pass FELs

Parameters for classification

- wavelength λ
- bunch repetition
- pulse duration
- pulse energy
- pulse shaping
- beam shaping
- synchronization
- stability

 $2 \ \mu m \ \dots \ 266 nm$ (HHG 30 nm)

1 Hz... 1 kHz(continuous)10 kHz... 9 MHz(burst pulse)

5 fs ... 30 ps

1 nJ ... 40 mJ (30J)

yes or no?

yes or no?

 $10 \text{ ps} \dots < 1 \text{ fs}$

single point of failure?
dedicated experiment!

EPAC0606/29/2006Holger Schlarb, DESY

Photo-injector laser - beam shaper, transport, launch -

Photo-injector laser - beam shaper, transport, launch -

	Component		Surf.	Losses per surface	Transmission
1	Adjustment of the shaper input	2 lenses	4	1%	0.961
2	Transport Tube windows	2 windows	4	2%	0.922
3	Imaging system	6 lenses	12	1%	0.886
4	Launch system Mirrors upstairs	8 mirrors	8	2%	0.851
5	Launch system Mirrors, vault	4 mirrors	4	2%	0.922
6	Vacuum mirror	1	1	10%	0.900
7	Vacuum Window	1	2	2%	0.960
8	2 Beamsplitters	2	4	4% and 1%	0.903
9	Waveplate	1	2		0.950
10	Energy Control				0.800
11	Beamshaper	3 lenses	6	2%	0.886
12	Aperture			10%	0.900
	Total				29.2 %

Photo-injector laser - high repetition rate (burst) -

Chain of Linear Amplifiers

2 diode pumped and 2 flashlamp pumped single pass amplifiers
Fully diode pumped version is being tested now at PITZ, DESY Zeuthen

- Flashlamps:
 - \rightarrow cheap, powerful (pulsed, 50 kW electrical/head)
 - \rightarrow current control with IGPT switches
 - \rightarrow allows flat pulse trains
 - \rightarrow energy up to 300 µJ (1 MHz), 140 µJ (3 MHz)

- Laser diodes:
 - \rightarrow 32 W pulsed, 805 nm

 \rightarrow end pumped through fibers

 \rightarrow energy from 0.3 µJ to 6 µJ/pulse

Burst-pulse trains

EPAC06 06/29/2006

Temporal pulse shaping

Motivation:

space-charge force distributed evenly across the bunch

 \Rightarrow decrease projected emittance

Temporal pulse shaping - bandwidth issue ... -

EPAC06 06/29/2006 See also C. Limborg & P. Bolton LCLS-TN-04-16 ¹²

Temporal pulse shaping - bandwidth issue ... -

Bandwidth critical impact on frequency Tripler! P. Bolton LCLS-TN-05-29

Temporal pulse shaping - 4f LCP-SLM shaper -

- Grating maps frequency spectrum into spatial coordinates
- 4f configuration: dispersion-free shaper + beam spot is focused on mask
- spectral mask (Liquid crystal programmable spatial light modulator w/o wave plates)

Used also to compensate fiber transport (see A. Azima MOPCH011)

Optical express, Vol 14 No.3, 1314, 6 Feb. 2006 A.M. Weiner, Rev. Scientific Instr., Vol. 71 No.5, 2000, p.1929 S. Cialdi, I. Boscolo, NIM A 526 (2004) 239–248)

Acousto-optic programmable dispersive filter (AOPDS)

- collinear acousto-optical modulation in birefringent crystral
- input polarization propagates along the fast axis
- traveling chirped acoustic wave is launched by transducer
- acoustic wave diffracts light at $z(\omega)$ to slow axis $(k_2=k_1+K, \omega_2=\omega_1+\Omega)$
- \Rightarrow Group delay depends upon diffraction position
- \Rightarrow Amplitude modulation depends on acoustic wave intensity
- output wave

First results with purely amplitude (red) And purely phase (modulation)

Courtesy: M.B. Danailov (Fermi)

Temporal pulse shaping - direct space to time (DST) -

- Laser beam passes spatial mask
- Diffraction grating disperses the spatial pattern
- Lens performance a spatial Fourier transform

Laser heater

Motivation:

- Collective effect: SP/CSR drive micro-bunch instabilities
- Residual energy-spread ~ 1-3keV \Rightarrow No Landau damping
- -Energy-spread can be larger for FELs ($\sigma_{\text{E}}/\text{E}<\rho$ ~ 5e-4)
 - \Rightarrow increase $\epsilon_E \rightarrow 10-50$ keV (compression factor C!)

Laser heater

Current enhanced SASE - ESASE -

Figure 1: A schematic of ESASE as applied to the LCLS.

significantly reduces gain length of SASE

EPAC06 06/29/2006

Higher Harmonic Generation

XUV pulse generation

Courtesy: R. Kienberger MPQ

P.B. Corkum PRL 71, 1994 (1993)

CEA / Service des Photons Atomes et Molécules

Higher Harmonic Generation - 3rd/13th harmonic -

 Characterization of 3th/13th harm. photon energy/beam profile/waist position

See also: M. Labat et al. ,MOPCH002/MOPCH003

Courtesy: M. Labat

22

See also: A. Winter TUPCH028/TUPCH029, talks: Kim THOPA03, F.Löhl THOBFI01

Synchronization laser

Dispersion managed soliton fiber-laser with artificial saturable absorber

- Fiber stretcher for passive mode locking to RF generator
- •Gain medium Erbium, 1550 nm wavelength
- ·High output power up to ~ 1 nJ (50 mW average)
- Pulse duration ~ 100 fs FWHM
- Repetition rate ~ 50 MHz

Polarization control for mode locking

Summary

- Laser systems have become key components of FELs
- Lasers substantially extend the capabilities of FELs
- The applications range from electron generation, beam conditioning, seeding and two color pump-probe experiments
- For user facilities \Rightarrow stability of laser system is the most critical item, especially for advanced systems
- New schemes and combinations for laser usage are expected in future