High-Gradient Superconducting Radiofrequency Cavities for Particle Acceleration

Lutz.Lilje@desy.de DESY -MPY-EPAC'06 29.6.2006

- Why Superconducting Accelerating Cavities?
- Limiting Mechanisms
- High Gradient Cavities
 - Surface Preparation
 - Fast Frequency Tuning
- Outlook

Thank You!

- To the TESLA Technology Collaboration for the support during the last years
- To many people for viewgraphs
 - J. Sekutowicz, K. Saito, E. Kako, A. Matheisen,
 H. Weise, D. Kostin, R. Lange, P. Sekalski, M.
 Liepe, M. Kelly, K. Shepard, H. Padamsee

Superconducting RF History : Installed Accelerating Voltage

Superconducting RF Present and Future: Accelerator Projects Featuring SRF Cavities

- Disclaimer: The focus is mostly on electron machines with beta =1
- LINACs
 - ILC, European XFEL, FLASH, ELBE, BESSY-FEL, MIT Bates, FERMILAB 8 GeV, SNS
- Recirculating LINACS
 - S-DALINAC, CEBAF, LUX, Arc-en-Ciel, Neutrino Factory/Muon Collider
- ERLs
 - JLAB FEL, JAERI, Cornell FEL, PERL (BNL), 4GLS, KEK-ERL, RHIC-II
- Storage rings
 - HEP
 - KEK-B, CESR, HERA, Tristan, LEP
 - Synchrotron Light
 - SOLEIL, CHESS, Canadian Light Source, Taiwan Light Source, DIAMOND

No guarantee for completeness...

Lutz Lilje DESY -MPY-

Superconducting Cavities

- SC cavities offer
 - a surface resistance which is six orders of magnitude lower than normal conductors (NC)
 - high efficiency, even when cooling is included
 - large currents can be accelerated
 - high duty cycle up to continuous wave (cw) operation
 - low frequency, large aperture
 - high accelerating gradients
 - attractive for a wide range of projects and a lot of ideas
 - E.g. XFEL, Linear collider, Energy Recovery LINACS

S. Casalbuoni,

L. von Sawilski,

- P. Schmüser,
- B. Steffen et al.

Susceptibility Measurements: Niobium Properties

- Surface treatment does not change the bulk properties e.g. $\rm B_{c}$ and $\rm B_{c2}$
- Surface critical field B_{c3} depends on surface preparation
 - Electropolishing (EP) vs. Standard etch (BCP)
 - Baking

	BCP	EP
T_c [K]	9.263 ± 0.003	
RRR	≈ 300	
surf. roughness		
on grain [nm]	≈ 1	
steps at grain bound.	1-5 $\mu {\rm m}$	$\lesssim 0.1 \mu {\rm m}$
$B_c(0)$ [mT]	180 ± 5	
$B_{c2}(0) [{\rm mT}]$	410 ± 5	
$J_c(0,0) \; [{\rm A/mm}^2]$	240 ± 10	180 ± 10

Proof-of-Principle: TESLA Nine-cell Test (ILC Baseline Cavity)

ര്

Examples for Limiting Mechanisms

1st Order

- Understanding Multipactoring
 - A few computer codes developed
 - Spherical shape realized at Genova and qualified at Cornell & Wuppertal
- Understanding Field Emission
 - Emitters were localized and analyzed
 - Improved treatments and cleanness
- Cure thermal Breakdown
 - Higher RRR Nb
 - Deeper control for inclusions

2nd Order

1984/85: First great success

- A pair of 1.5 GHz cavities developed and tested (in CESR) at Cornell
- Chosen for CEBAF at TJNAF for a nominal $E_{acc} = 5 \text{ MV/m}$

Lutz Lilje DESY -MPY-

Cleanroom Technology for SC Cavities

The inter-cavity connection is done in

class 10 cleanrooms

 the small surface resistance of the superconducting necessitates avoidance of NC contaminations larger than a few µm

- detailed material specification and quality control are done
- tight specification for fabrication e.g. welds have been implemented
- clean room technology is a must (e.g. QC with particle counts, monitoring of water quality, documentation of processes)

Performance of FLASH Accelerator Modul From H. Weise/ D. Kostin

Surface Preparation: Electropolishing

- Electropolishing (EP) of niobium surfaces is a key technology to achieve the highest electrical and magnetic surface fields
- KEK/ Nomura Plating pioneered application of EP to elliptical niobium cavities since TRISTAN using a Siemens' recipe from the 1970s
- Since then EP has also been successfully applied to
 - Low-Beta Quarter wave structures
 - TESLA nine-cells

Electropolishing Offers Improved Surface Quality

Lutz Lilje DESY -MPY-

Electropolished 1,3 GHz Elliptical Niobium Cavities K. Saito et al. KEK 1998/1999

Cavity Processing: ANL β=0.63 Triple-Spoke Cavity, Area ~1.5 m²

ANL EP: Beta=0.63 Multi-Spoke Cavity

Q-disease was observed; hydrogen degassing at 600 °C was performed at ANL

>2 K surface resistance decreased substantially after 600 °C bake.

Electropolishing Setup at DESY

Lutz Lilje DESY -MPY-

TESLA Nine-Cells: Low-Power Results

FLASH Module 6: High Gradient Module

Cavity Position in Module

Work needed: Reproducibility in the EP Process

Active Tuner

- Lorentz force detunes the cavity during one RF pulse
 If detuning is too large extra RF power would be needed
- Actively compensate the detuning of the cavity during the RF pulse by mechanical means
- Piezoelectric elements are suitable for this application

Frequency Detuning during RF Pulse

Proof-of-Principle: Piezoelectric Tuner

M. Liepe, S. Simrock, W.D.-Moeller

Sensor-Actuator: Piezoelectric Elements in the Tuning Mechanism

Lutz Lilje DESY -MPY-

RF Signals at 35 MV/m

Damping of the ringing between pulses (5Hz operation)

Frequency stabilization during RF pulse using a piezoelectric tuner Blue: With piezo

Red: Without piezo

Frequency detuning of ~ 500 Hz compensated voltage pulse (~ 100 V) on the piezo. No resonant compensation

Resonant Excitation of the Cavity

0

Frequency stabilization at 35 MV/m

Blue: With piezo

Red: Without piezo

Frequency detuning of ~1000 Hz compensated with resonant excitation of a mechanical cavity resonance at 230 Hz.

NOTE: This is rather an demonstration of the capability of active tuning. Application in a real machine needs investigation.

Work to be done for projects ahead

• XFEL

- Transferring knowledge to industry

- Cavity manufacture done in industry since the formation of the TESLA collaboration
 - Also for auxiliaries
- Cavity Processes
 - Electropolishing has started
- Module manufacturing and assembly
 - Studies with participation of industry in progress (see module 6)

• ILC

- Proof-of-existence is there!
- Need to increase yield of getting 'good' cavities
 - Surface preparation is the clue
- Further look into cost reduction
 - Other cavity shapes
 - Other materials
- Involve industry in an early stage
- Other projects (e.g. see Susan Smith's Talk)
 - Higher beam currents
 - E.g. HOM damping
 - CW operation
 - E.g. Higher Q₀

Lutz Lilje DESY -MPY-

Example of XFEL Industrialisation: Henkel

- Very high gradient (up to 40 MV/m), high Q₀ single-cell cavities have been prepared
- Study on improved quality control measures at DESY and Henkel
 - E.g. Improved parameter-control of electrolytes
- Upto three-cell 1.3 GHz cavities can be treated currently

Lutz Lilje DESY -MPY-

ILC: Shapes

- TESLA shape
 - Baseline
- Alternative Shapes
 - Main Feature
 - Designed for
 - Lower H_{peak}/E_{acc} : magnetic field limit
 - Caveat
 - Higher E_{peak}/E_{acc} : field emission
 - 'Low-Loss' shape (LL)
 - Originally designed for lower cryo losses
 - Re-entrant shape (RE)

TESLA Cavity Design

- Frequency choice
 - Lower frequency better for
 - RF losses (BCS surface resistance)
 - Lower wakefields
 - 1.3 GHz klystrons were available
- Cavity RF Layout
 - Number of cells determined by maximum cell-to-cell coupling k_{cc} (field flatness)
 - Low E_{peak}/E_{acc} (less sensitive to field emission)
 - End cells asymmetric
 - Avoid trapping of TE121 higher order mode
 - Keep TM010 and first two dipole bands mode flat

Figure 2.1.3: Side view of the 9-cell cavity with the main power coupler port and two higher-order mode couplers.

stiffening ring

16.07.2006

Lutz Lilje DESY -MPY-

1. Introduction: Evolution of the elliptical cavities cont.

Example: 1.3 GHz inner cells for TESLA and ILC

1. Introduction: Criteria, cont.

"Hunting" for high gradients goes together with "hunting" for low cryogenic loss.

Conclusion

- SCRF cavities have a broad range of applications
- Technology matured over the recent years
 E.g. commercially available SCRF systems
- Challenges are the reproducibility of very high gradients and cost reduction
 - 35 MV/m has been demonstrated several times
 - A production-like process is under development
- A lot of working ongoing for the XFEL and ILC
 - It is a big asset for both of them that they still can profit from each other
- Single-cells have shown more than 50 (!) MV/m
 - First tests on multi-cells are underway

Lutz Lilje DESY -MPY-

Cavity Test Inside a Module (ctd.)

- One of the electropolished cavities (AC72) was installed into an accelerating module for the VUV-FEL
- Very low cryogenic losses as in high power tests
- Standard X-ray radiation measurement indicates no radiation up to 35 MV/m

Lutz Lilje DESY -MPY-

Goals of the TESLA Test Facility Linac

