

Development of Computational Tools for Halo Analysis and Study of Halo Growth in the SNS

Dirk A. Bartkoski, Alexander V. Aleksandrov, Sarah M. Cousineau, Stuart Henderson, Jeffrey Alan Holmes

Spallation Neutron Source

June 29, 2006

European Particle Accelerator Conference

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Spallation Neutron Source (SNS)

H⁻ ions are created and bunched.

lons are accelerated to 1GeV.

Delivers 1micro-second pulses.

Liquid mercury target produces neutrons.

Minimize Beam Losses

- SNS design beam power is 1.44 MW
- SNS beam specification for beam loss is < 1W/m
- Beam halo has been identified as a contributing factor to beam loss as can be seen in the beam profiles.
- Halo production is attributed to mismatch.

Wirescanner beam profiles for two quadrupole settings.

Medium Energy Beam Transport (MEBT)

- The MEBT is responsible for matching into the DTL.
- The DTL has permanent magnet quadrupoles.
- Quadrupoles 11, 12, 13, and 14 are main matching quads.
- Wirescanners are used to measure beam profiles.

Quantifying Halo

- Qualitatively halo are large amplitude particles outside a central beam core.
- Kurtosis method [Wangler, XX International Linac Conference, 2000] was difficult to use on experimental data due to low signal to noise ratio.
- Area Ratio method was used.
- Gaussian is fitted to the top 90% of the profile.
- Using only data outside 1 sigma.
- Dividing the total area by the Gaussian area gives a ratio of halo.

Matching

- Purpose of this study was to control halo development by matching from MEBT to DTL.
- Pictorial representation of a mismatched particle.
- Quadrupoles 11-14 were used.
- Varying each quad 10% from the nominal value.

Simulations

- Parmila using the 3DPicnic routine was used.
- Run for nine quadrupole settings.
- Cases are named by the amount each quadrupole was varied from nominal.
- Using three input distributions
 - Reference Distribution (measured)
 - Gaussian Distribution
 - Waterbag Distribution
- Tracked from the beginning of the MEBT through the DTL to the end of the CCL.

Q11 Q12 Q13 Q14 +10~N~N~N N+10~N~N N~N+10~N $N \sim N \sim N + 10$ N~N~N~N N~N~N-10 N~N-10~N N-10~N~N -10~N~N~N

Results: Measured vs. Simulation

- Halo plots for all quadrupole cases at different positions in the horizontal transverse direction.
- Halo decreases at the end of the CCL in both simulation and experimental data.
- Difference between simulated and experimental halo data in the DTL.
- Certain quadrupoles appear to be more sensitive to halo production with the Nominal case having the least halo.

UT-BATTELLE

- Measured halo trends show little similarity with simulation in the vertical direction.
- Vertical results show similar quadrupoles produce more halo.
- Simulations for both horizontal and vertical show a decrease in halo in the CCL

Simulated Halo Growth

 Simulation profile data shows a decrease in halo at the end of the CCL.

Results: Emittance Analysis

- Simulated emittance data showing core growth.
- Simulations conclude that the core grows and consumes the halo particles.
- Phase space orientation could explain disappearance of halo in experimental data.

Initial Distribution Dependence

- Gaussian and Waterbag distributions were used to study sensitivity to initial halo.
- Halo is produced regardless of initial distribution.
- Halo production is primarily dependent on mismatch, not initial distribution.

Partial success of simulating profiles.

Conclusions

- Gaussian Area Ratio method is useful for quantifying halo.
- Partial success of simulations to model halo profiles.
- Simulations show a decrease in halo with an increase in emittance. This has not yet been experimentally confirmed.
- Phase advance may be a reason for the apparent disappearance of halo in experimental data.
- Finding an initial distribution, matched to measured Twiss parameters, that accurately represents the beam is currently being sought.

