

Results from FLASH

Free-electron LASer in Hamburg

Jörg Rossbach University of Hamburg & DESY for the FLASH accelerator team

- FEL basics
- FLASH layout
- Electron beam -- The challenge of fs bunch length
- Photon beam
- The future
- Conclusion

FEL Basics

Radiation power of oscillating point-like charge Q:

Point-like bunch radiates coherently $P \propto N_e^2$!

$$P \propto Q^2 \cdot \gamma^2$$

$$Q = N_e \cdot e$$

$$N_e = \# \text{ electrons}$$

<u>"Point" means above all: bunch length < $\lambda_{radiation}$ </u> Synchrotron radiation of an incoherent electron distribution: $P \propto N_{e}$

 \rightarrow desired: bunch length < wavelength

OR (even better)

Density modulation at desired wavelength

→Potential gain in power: $N_e = 10^9 - 10^{10} !!$

FEL Basics

Idea:

Start with an electron bunch much longer than the desired wavelength and find a mechanism that cuts the beam into equally spaced pieces automatically

Free-Electron Laser

(Motz 1950, Phillips ~1960, Madey 1970)

Special version:

starting from noise (no input needed) Single pass saturation (no mirrors needed)

Self-Amplified Spontaneous Emission (SASE)

SASE FEL challenges

Electron beam parameters needed:

Gain Length (power e-folding): $L_g = \frac{1}{\sqrt{3}} \left[\frac{2mc \ \gamma^3 \sigma_r^2 \lambda_u}{\mu_0 e \ K^2 \hat{I}} \right]^1$

Beam size:

 $\sigma_r \approx 50 \ \mu m \Leftrightarrow$ high electron desity for maximum interaction with radiation field Emittance $\varepsilon \leq \lambda/4\pi$

need special electron source & accelerate the beam before it explodes due to Coulomb forces

Energy width:

Narrow resonance $\rightarrow \sigma_E/E \leq 10^{-3}$ \Leftrightarrow Small distortion by wakefields etc.

Peak current inside bunch: Î > 1 kA

feasible only at ultrarelativistic energies, otherwise ruins emittance \Rightarrow bunch compression

Straight trajectory in undulator

to guarantee overlap electron beam – photon beam:

<u>typical</u>ly < 10 μ m over >10 m

Increasingly difficult for shorter wavelength:

EPAC 2006 longer undulator, smaller emittance, larger peak current rg Rossbach, Univ HH

Wavelengths achieved at SASE FELs vs. year of 1st operation Jörg Rossbach, Univ HH

FLASH Layout

250 m

FLASH Aerial View

First lasing at 32 nm in January 05

TESLA Test Facility Injector + bunch compression

s.c. TESLA Modules + undulators

experimental hall

Beam time allocation:

- FEL Users
- FEL studies to further develop the FEL
- accelerator studies, in particular on TESLA technology for XFEL and ILC

see S. Schreiber Ongitudinal phase space injector

Transverse Projected Emittance

Observation of beam size at 4 OTR screens simultaneously

- Continuous measurement of the emittance during a period of ~1.5 hours (1 nC, 127 MeV); no compression
- In this example, the <u>projected</u> normalized 90% rms emittance is ε_n = 1.6 mm mrad
- Jitter 2 3 % (rms)
 → agrees with the statistical error

Fitting method, 100% emittance Tomography, 100% emittance Fitting method, 90% emittance Tomography, 90% emittance

Jorg Rossbacn, Univ HH

Resolving fs properties

- The observed double peak structure of the FLASH beam is understood by simulations: effect of coherent synchrotron radiation in bunch compressor.
- Qualitative agreement between simulated and measured profiles

LOLA long. resolution ~20 fs

see M. Roehrs MOPCH13 MOPCH14

Can we distinguish between csr vs. space charge driven effects on beam dynamics?

Coherent synchrotron radiation effects

 \rightarrow CSR effects inside the chicane dominate while space charge forces are negligible.

CSR emission leads to centroid shifts due to energy loss and non-zero dispersion for off energy particles.

... further fs scale diagnostics

Spectroscopy of coherent THz radiation

see O. Grimm TUPCH 021 H. Delsim-Hashemi TUPCH 016

Beam arrival time stability measured with electro-optic sampling: rms timing fluctuations 200 fs

Cure: Remove spurious dispersion (while keeping constant the orbit)

Jörg Rossbach, Univ HH

EPAC 2006

Lasing at 13 nm

 $E_{electron} = 690 \text{ MeV}$

 E_{pulse} = up to 30 µJ \rightarrow P_{rad} = up to 1 GW

Summary radiation properties:

Radiation pulse duration (FWHM)	20 -100 fs
Radiation peak power	1 - 4 GW
Spectrum width	~ 1 %
Transverse coherence	almost perfect

Peak brilliance exceeds any source at this wavelength by many orders of magnitude.

EPAC 2006

Jörg Rossbach, Univ HH

- 16 projects had beam
- Most experiments are very complex and include many components → collaborations, large teams
- First reports are very promising:
 - commissioning of most experiments was quite successful
 - most experiments have taken first useful data demonstrating that their concepts work;
 data are currently evaluated

FLASH: the VUV-FEL User Facility at DESY

Univ HH

First demonstration of coherent diffraction imaging with a soft-X-ray FEL (Hajdu, Chapman)

The European XFEL

Proposal October 2002:

X-ray FEL user facility with 20 GeV superconducting linear accelerator in

TESLA technology

- Approval by German government Feb. 2003 as a European Project
- German commitment for 50% of the funding plus another expected 10% by the states Hamburg and Schleswig-Holstein, 40% from European partners
- Estimated total project cost 970 M€

The European XFEL

Jörg Rossbach, Univ HH

EPAC 2006

The European XFEL

Jörg Rossbach, Univ HH

EPAC 2006

- Reach design wavelength 6 nm (need 1 more TESLA module)
- Install 3rd Harmonic Cavity → remove curvature in long. phase space
- Long pulse trains (7200 bunches)
- Fast wavelength tuning (now ~ 1 day)
- Install self-seeding

Conclusion

- fs scale accelerator physics & technology
- SASE FEL principle demonstrated down to 13 nm
- Brilliance 100 Mio above storage ring sources
- Full agreement with theory
- FLASH running for users
- Paves the way towards Ångstrøm FELs

 --- in particular the European XFEL

Simulation Methods

- → RF-gun **ASTRA**
- Apply wake field kicks of ACC1 & Optics matching
- → BC2 CSRTrack (projected method)
- → BC2 to BC3 **ASTRA**
- Apply wake field kicks of ACC2&3
- → BC3 **CSRTrack** (projected method)
- → BC3 to LOLA ASTRA

Start-to-end tracking for different phases in ACC1

The VUV-FEL team

The VUV-FEL is a project of the TESLA Technology Collaboration

www

[†] W. Achermann, V. Ayvazyan, N. Baboi, J. Bähr, V. Balandin, B. Beutner, A. Brandt, I. Bohnet, A. Bolzmann, R. Brinkmann, O.I. Brovko, J.P. Carneiro, S. Casalbuoni, M. Castellano, P. Castro, L. Catani, E. Chiadroni, S. Choroba, A. Cianchi, H. Delsim-Hashemi, G. Di Pirro, M. Dohlus, S. Düsterer, H.T. Edwards, B. Faatz, A.A. Fateev, J. Feldhaus, K. Flöttmann, J. Frisch, L. Fröhlich, T. Garvey, U. Gensch, N. Golubeva, H.-J. Grabosch, B. Grigoryan, O. Grimm, U. Hahn, J.H. Han, M. v. Hartrott, K. Honkavaara, M. Hüning, R. Ischebeck, E. Jaeschke, M. Jablonka, R. Kammering, V. Katalev, B. Keitel, S. Khodyachyhh, Y. Kim, V. Kocharyan, M. Körfer, M. Kollewe, D. Kostin, D. Krämer, M. Krassilnikov, G. Kube, L. Lilje, T. Limberg, D. Lipka, S. Liu, F. Löhl, M. Luong, C. Magne, J. Menzel, P. Michelato, V. Miltchev, M. Minty, W.D. Möller, L. Monaco, W. Müller, M. Nagl, O. Napoly, P. Nicolosi, D. Nölle, T. Nuñez, A. Oppelt, C. Pagani, R. Paparella, B. Petersen, B. Petrosvan, J. Pflüger, P. Piot, E. Plönjes, L. Poletto, D. Proch, D. Pugachov, K. Rehlich, D. Richter, S. Riemann, J. Rönsch, M. Ross, J. Rossbach, M. Sachwitz, E.L. Saldin, W. Sandner, H. Schlarb, B. Schmidt, M. Schmitz, P. Schmüser, J.R. Schneider, E.A. Schneidmiller, S. Schnepp, H.-J. Schreiber, S. Schreiber, D. Sertore, S. Setzer, A.V. Shabunov, S. Simrock, E. Sombrowski, L. Stavkov, B. Steffen, F. Stephan, F. Stulle, K.P. Sytchev, H. Thom, K. Tiedtke, M. Tischer, R. Treusch, D. Trines, I. Tsakov, A. Vardanyan, R. Wanzenberg, T. Weiland, H. Weise, M. Wendt, I. Will, A. Winter, K. Wittenburg, M.V. Yurkov, I. Zagorodnov, P. Zambolin, K. Zapfe