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Abstract

In this contribution beam dynamics in circular proton
and ion accelerators with high beam intensity and space
charge effects is reviewed. The main focus is on recent the-
oretical and experimental results related to collective insta-
bilities with space charge and possible cures. We outline
the effect of space charge on collective instability thresh-
olds and impedance budgets. The stability of longitudi-
nal bunched beam modes and of transverse dipole modes
in the presence of space charge and external nonlinearities
is discussed. Finally recent work related to longitudinal
and transverse microwave instabilities with space charge is
summarized.

INTRODUCTION

Space charge effects play an important role in many ex-
isting and future high intensity ring accelerators, especially
at injection energies or close to transition. In combination
with linear or nonlinear machine resonances space charge
can cause fast [1] or gradual transverse beam losses [2, 3]
resulting in the so called ’incoherent space charge limit’
[4]. Below transition energy and for ’well behaved’ beam
distribution functions space charge alone does not cause
coherent instabilities. However, space charge can modify
the instability thresholds, the growth rates and the satu-
ration levels of coherent instabilities driven by impedance
sources, like the resistive wall, kickers or other ring com-
ponents (see e.g. [5, 6, 7, 8, 9]). In order to accurately pre-
dict impedance budgets for future high current machines,
like the SIS 100 at GSI [10], a detailed understanding of
the interplay of space charge, nonlinear focusing fields and
impedances is required. In many cases of practical interest
stability boundaries can be obtained from simplified analyt-
ical models. Because of the complexity space charge adds
to the analysis the resulting instability thresholds require
a verification by computer simulation or experiments, es-
pecially if nonlinear and collective effects are important.
The simulation studies greatly benefit from the possibil-
ity to perform large-scale parameter studies on modern
computers. In order to give an example of the relevance
of space charge effects in different machines we list their
space charge parameters in Tab. 1.
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Table 1: Longitudinal (Δνs) and transverse (ΔQv) space
charge tune shifts (∗performance goals) and important
impedance sources for a reference energy in different ma-
chines [3, 10, 11, 27].

machine GeV/u ΔQv Δνs/νs impedance
SNS 1 -0.15 − kicker, e-cloud
CERN PS 1.4 -0.25 −0.03 wall, kicker
SPS 26 -0.07 < 0.01 kicker, e-cloud
SIS 18 0.01 -0.5∗ -0.2∗ wall, kicker, rf
SIS 100 0.2 -0.3∗ -0.15∗ wall, kicker, rf

TRANSVERSE RESISTIVE WALL
INSTABILITY

One of the most severe instabilities in high current ring
machines is the transverse resistive wall instability. In the
presence of space charge the threshold intensity for the on-
set of the instability can be much lower [7, 12]. This phe-
nomenon is usually explained in terms of the ’loss of Lan-
dau damping’ due to the space charge induced shift of the
incoherent betatron tune

ΔQ ∝ − Z2NR

ABfβ2
0γ3

0ε
(1)

relative to the frequency of coherent dipole oscillations
Ω = (n − Q)ω0 + ΔΩ, that is not affected by the direct
space charge force. Here Z and A are the particle charge
and mass numbers, N is the particle number, R the ring
radius, Bf the bunching factor, ε the transverse emittance
and ω0 the revolution frequency. ΔΩ is the coherent fre-
quency shift and n the mode number. In case of a ’cold’
beam without incoherent frequency spread ΔΩ is directly
determined by the transverse wall impedances

ΔΩc = − i

8π2

q2N

mγ0cQ0
Z⊥ (2)

with the bare tune Q0. At the lowest coherent frequency
Ω ≈ (1 − [Q])ω0, with the fractional part of the tune [Q],
the wall in fast ramping synchrotrons, like SIS 100, is thin
relative to the skin depth and the following expression for
the driving resistive wall impedance applies [13]

Ztw
⊥ = Ztw

⊥ (Ω) =
2β0cR

b3σΩd
(3)

with the wall thickness d, the pipe radius b and conduc-
tivity σ. The effect of the image currents in the wall is
represented through the space charge impedance

Zsc
⊥ = −i

Z0R

β2
0γ2

0b2
(4)
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For relatively thick beams, like in SIS 100 at injection en-
ergy or in the SNS accumulator ring [14], the coherent fre-
quency shift due to image currents can be important. Intro-
ducing the effective chromaticity with the slip factor η0

S = ω0 (ξ − (n±Q)η0) (5)

the stability boundary resulting from the dispersion relation
for a beam with finite rms momentum spread δ rms can be
approximated through a modified ’Zotter-Keil’ criteria

| ΔΩc − ω0ΔQ |� FSδrms (6)

with a form factor F that depends on the momentum spread
distribution. If wall effects can be neglected (ΔΩc = 0)
loss of Landau damping due to direct space charge occurs
for | ΔQ |� FSδrms. As an example, during accumulation
in SIS 100 one expects ΔQ/(FSδrms) ≈ −10 (see [12]),
which is well outside the stability boundary for a Gaussian
momentum distribution. Without Landau damping even
weak resistive impedances can cause unstable growth of
dipole oscillations. The resulting condition for the band-
width of a feedback system is

ωmin = (1− [Q])ω0, ωmax =
ω0ΔQ

|η0|Fδrms
(7)

In order to restore Landau damping in a coasting beam it
would be sufficient to shift the real part of the coherent fre-
quency by ΔΩ = ΔQ using a purely reactive broadband
feedback. A feedback is termed reactive if it causes only
a coherent frequency shift whereas a system causing pure
damping is called resistive [15]. In the case of bunched
beams the analysis of growth rates and damping mecha-
nisms with space charge is more complex. Firstly in a fi-
nite beam the lowest mode numbers cannot be driven as ef-
ficiently. Secondly, there can be additional damping mech-
anisms due to the spreads in the incoherent and in the co-
herent tunes along the bunch. Especially the coherent tune
spread induced by the space charge impedance Eq. (4) can
lead to stabilization (see e.g. [14]).

LONGITUDINAL DIPOLE MODES

Persistent longitudinal dipole or quadrupole oscillations
attributed to space charge in intense bunches have been ob-
served e.g. in the CERN PS booster [16, 17] and also in
SIS 18 [18]. The space charge induced loss of longitudi-
nal Landau damping can be a severe problem. The bunches
are unstable with regard to every coupling impedance that
drives dipole or quadrupole modes. In the following we
will review work related to dipole oscillations in nonlin-
ear rf buckets and the effect of space charge. The relative
longitudinal space charge tune shift and also the relative
tune spread due to the nonlinear rf focusing field can be
much larger than in the transverse plane. Therefore ana-
lytic approaches have to be confirmed by simulation stud-
ies. In the following an elliptic bunch distribution will be
assumed [16]. The resulting bunch profile is realistic for

strong space charge [4] and leads to a space charge force
proportional to the external rf force [18]. The longitudinal
space charge effect (below transition) is measured through
the parameter

Σ =
1

Vrf/Vs − 1
> 0, with Vs ∝ −qNb

∣
∣
∣
∣

Zsc
‖
n

∣
∣
∣
∣

∂λ

∂φ
(8)

with ratio of the rf voltage Vrf and the space charge in-
duced voltage Vs. Here Nb is the number of particles in the
bunch, Zsc

‖ /n is the constant, long wavelength, longitudi-
nal space charge impedance, λ is the line density profile
and φ the rf phase of the bunch particles. For small Σ and
bunch length φm (parabolic bunch profile) the incoherent
synchrotron frequency in a rf bucket as a function of the
particle amplitude is

ωs(φ̂) =
ωs0√
1 + Σ

(1− Sφ̂2) ≈ ωs0 + Δωs − Sφ̂2 (9)

with the synchrotron frequency ωs0 for small amplitudes
and the space charge induced synchrotron frequency shift
Δωs/ωs0 ≈ −Σ/2. The synchrotron frequency spread due
to the nonlinear rf is δωs ≈ Sφ2

m with S = 1/16. The
frequency of ’rigid’ dipole oscillations of a short parabolic
bunch in a rf wave is

Ω0 = ωs0 + ΔΩ0 ≈ ωs0

(

1− 4
5
Sφ2

m

)

(10)

with the zero intensity coherent frequency shift ΔΩ0 (see
[16, 18, 19]). Landau damping is lost when the coherent
frequency (here the ’rigid’ dipole mode) is outside the band
of incoherent synchrotron frequencies [16]. For Landau
damping the following condition should apply

ωs(φm) < Ω < ωs(0) (11)

Below transition space charge reduces the synchrotron fre-
quency and only the upper limit applies

Δω

S
<

4
5
φ2

m, or Σ <
φ2

m

10
(12)

For φm = 60o we obtain a threshold space charge param-
eter of Σth ≈ 0.1. It is important to note that the Σth

describing the loss of Landau damping in a double rf wave,
used also for bunch flattening, is much smaller [18]. There-
fore a double rf system cannot be used to restore Landau
damping, even though the incoherent frequency spread in
the double rf wave is much larger compared to a single rf
wave. In the following we analyze the effect of coherent
synchrotron tune shifts and the corresponding bunch stabil-
ity thresholds. We introduce an effective normalized dipole
impedance Z eff and the induced coherent synchrotron fre-
quency shifts for a very short bunch in the form

ΔΩc ≈
iωs0

2
(Zeff

R + iZeff
I ) (13)
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Figure 1: Stability boundary from Eq. (14). The shifted
boundary corresponds to Σ = 0.3 and φm = 900, which
are the expected bunch parameters in SIS100 during accu-
mulation.

The coherent frequency shift in a nonlinear rf bucket can
be obtained from the dispersion relation [19, 5]

1 = −π(ΔΩc −Δω)
∫

df(φ̂)
dφ̂

φ̂2dφ̂

Ω− ωs(φ̂)
(14)

with the synchrotron frequency distribution f( φ̂). In de-
riving Eq. (14) mode coupling has been neglected and
a ’rigid’ dipole oscillation has been assumed. In Fig. 1
the resulting stability boundary for a elliptic momentum
spread distribution is shown. The shifted boundary cor-
responds to Σ = 0.3 and φm = 900 (SIS 100). In this
case the space charge induced frequency shift is ≈ −0.12,
which is about twice the frequency spread in the nonlinear
rf bucket. An important question is the validity of the sta-
bility boundary obtained from Eq. (14). Fig. 2 shows the
result of an impedance scan using a self-consistent particle
tracking code [18] solving the synchrotron equation of mo-
tion including the effective impedances and space charge.
For Σ = 0 we obtain perfect agreement with the stability
boundary predicted by Eq. (14). However, for Σ = 0.3 one
can see in Fig. 2 that the stability area and the shift of the
stability boundary differ. The actual stable area (black) and
also the shift obtained from the simulation are both smaller.
The reason for this discrepancy possibly lies in the complex
interplay of nonlinear and collective dynamics that cannot
be fully captured with the simplified analysis. The limits
of applicability of Eq. (14) become apparent if one consid-
ers flat-topped bunch profiles. Mathematically a flat-topped
bunch can be created by subtracting two elliptic distribu-
tions with different bunch lengths [16]. Different methods
have been employed to generate flat-topped bunches and
to increase the bunching factor and so the transverse space
charge limit. Flat-topped bunches are unstable in the pres-
ence of longitudinal space charge. They ’decay’ through a
dipole instability [20, 18] above a certain threshold space
charge parameter. The stability boundary for flat-topped
bunches cannot be predicted ignoring mode coupling [21].

Figure 2: Simulation scan of induced dipole oscillations
for different effective impedances Z eff. Plotted is the max-
imum (saturated) dipole amplitude obtained from the sim-
ulation. The initial condition is a matched elliptic distri-
bution with a bunch length φm = 60o and Σ = 0.3. The
curve represents the stability boundary obtained from Eq.
(14).

It is interesting to point out that simulation results show that
flat-topped bunches are stabilized if −ReΔΩc � −Δω. In
this case the coherent dipole mode is shifted below the min-
imum incoherent synchrotron frequency in the bunch. Such
a shift of the coherent dipole frequency could be achieved
using a purely reactive longitudinal feedback system.

NONLINEAR SPACE CHARGE

In the foregoing sections we treated Landau damping
due to linear and nonlinear tune spreads induced by exter-
nal forces. The direct space charge field is another internal
source of nonlinear tune spread. In the transverse plane the
betatron amplitude dependent tune due to (nonlinear) space
charge and an external nonlinear force is [8]

Qx(x̂, ŷ) = Q0 −ΔQxG(x̂, ŷ) + Sext
x x̂2 (15)

with G(x̂, ŷ) ≈ 1−Ssc
x x̂2−Ssc

y x̂2. Here ΔQx is the linear
space charge tune shift, S ext

x is the tune spread coefficient
representing e.g. an octupole, S sc

x is the tune spread co-
efficient for small amplitudes (relative to the beam radius
a) due to nonlinear space charge. For rough estimates the
tune spread for a parabolic density profile due to nonlinear
space charge can be approximated as δQ sc ≈ Ssc

x a2ΔQ =
3/8ΔQ. In Ref. [8] (with refinements in Ref. [22]) it
was shown that nonlinear space charge can enhance Landau
damping due to octupoles. Nonlinear space charge alone
does not cause any Landau damping, because it is an inter-
nal force that cannot affect the beam centroid motion. The
external nonlinearity is needed in order for nonlinear space
charge to become effective (see also [23]). The results ob-
tained in Refs. [8, 22] exhibited a strong dependence on the
polarity of the octupole. A depedence of Landau damping
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Figure 3: Stability boundary provided by octupoles with
(dashed curve) and without (solid curve) nonlinear space
charge. U + iV = ΔΩc/ΔQx.

on the octupole polarity has also been obtained in simula-
tions studies for the SNS using a bunched beam [14]. The
dispersion relation used in Refs. [8, 22] is

1 =
∫

(ΔΩc − ω0ΔQ(x̂, ŷ))
dρ(x̂)
dx̂

x̂2g(ŷ)dŷdx̂

Ω− ω0Qx(x̂, ŷ)
(16)

with ΔΩc determined through Eq. (2) and with the hor-
izontal and vertical betatron amplitude distributions f(x̂)
and g(ŷ). Fig. 3 shows the stability boundary obtained
from Eq. 16 with and without nonlinear space charge for
octupole strengths and beam parameters relevant for SIS
18 and 100. Eq. (16) relies on a number of simplifying
assumptions, e.g. radial mode coupling induced by non-
linear space charge has been neglected. In SIS 18 and
100 nonlinear space charge together with octupoles and the
negative coherent frequency shift induced by image cur-
rents could potentially stabilize the resistive wall instability
[12]. In order to obtain more accurate results a compari-
son of the stability boundary obtained from Eq. 16 with a
simulation scan using the self-consistent particle tracking
code PATRIC has been performed [12]. The simulations
confirmed that there is no Landau damping due to nonlin-
ear space charge alone. Furthermore the enhancement of
the octupole-induced Landau damping by nonlinear space
charge has been confirmed. Also the shift and the width of
the stability boundary along the ReΔΩc axis agrees very
well with the simulation results. However, the results of
the simulation scans indicate that Eq. (16) overestimates
the stable area in the ΔΩc plane. Another important find-
ing is that the effect of the octupole polarity on the stability
boundary is much weaker than predicted by Eq. (16). Fur-
ther theoretical as well as experimental studies are required
in order to consolidate these results and to extend them also
to bunched beams. In this context also the question of pos-
sible long-term beam loss due to resonances induced by
octupoles [2] needs to be addressed.

LONGITUDINAL MICROWAVE
INSTABILITY

Here we consider the interaction of long bunches with
a broadband resonator. The bunch length is assumed to
be long relative to the resonant wavelength. The local fre-
quency spread in the bunch is

S =
1
2
ω0η0

(
Δp

p

)

fwhm

(17)

The normalized impedance is defined as

Vn − iUn =
|η0|I0q

2πmR2γ0S2

[

Re

(
Zn

n

)

+ iIm

(
Zn

n

)]

(18)
with the longitudinal impedance Zn at ωn = nω0. We will
assume that the imaginary impedance is dominated by the
longitudinal space charge impedance [24]

Zsc
n

n
= −i

gZ0

β0γ2
0

1
1 + (n/nc)2

(19)

We define the space charge parameter as U = U sc
n=1. The

coherent frequency shift of longitudinal waves is defined as
ΔΩ = ω−nω0. If we assume that the impedance spectrum
is dominated by space charge we obtain the phase velocity
of space charge waves on the bunch (see e.g. [25])

cs =
R

n
ΔΩR ≈

1
2
RS

√

Un (20)

together with the corresponding instability growth rate

τ−1
I = ΔΩI ≈

1
2
nS

Vn√
Un

(21)

The time needed for a perturbation starting at the bunch
head to reach the bunch end is τ ≈ l/cs, with the bunch
length l. If we assume that all waves will be damped due
to incomplete reflection or ’wave breaking’ at the bunch
end we can formulate the following stability criteria [6] and
substitute Eqs. 20 and 21

csτI

αel
� 1 ⇒ Vn

Un
� 2Rαe

nl
(22)

with the effective number of e-foldings αe from the bunch
head to the end. Fig. 4 shows the comparison of this sta-
bility criteria with a simulations scan (see Ref. [6]) for a
beam confined between two barrier rf waves and interact-
ing with a broadband resonator with the normalized shunt
impedance V centered at a wave length λ ≈ l/10. One can
see that for U � 1 the stability boundary follows Eq. 22
if we choose αe = 6. Also shown are the coasting beam
stability boundaries for a parabolic and for a Gaussian mo-
mentum spread distribution.

TRANSVERSE MICROWAVE
INSTABILITIES WITH SPACE CHARGE

At frequencies above ωmax from Eq. (7) Landau damp-
ing due to the finite momentum spread becomes effective.

Proceedings of EPAC 2006, Edinburgh, Scotland WEXFI01

05 Beam Dynamics and Electromagnetic Fields
D03 High Intensity - Incoherent Instabilities, Space Charge, Halos, Cooling

1885



Figure 4: Emittance increase in a barrier bucket beam as
a function of initial (U, V ) values. The black area corre-
sponds to a stable beam.

Therefore the loss of Landau damping is usually not an is-
sue for high frequency. An exception is the operation close
to transition. In long bunches the coherent frequency shift
induced by the space charge impedance can lead to a phase
velocity of coasting beam-like slow modes on the bunch.
If unstable modes are damped at the bunch end the trans-
verse microwave instability can be stabilized, similar to the
stabilization obtained in the longitudinal plane (see previ-
ous Section). As an example we studied the beam breakup
instability observed in the CERN PS [26] near transition
using the PATRIC code. In this case the synchrotron mo-
tion can be regarded as ’frozen’. The simulation showed
the importance of space charge (ΔQv ≈ −0.2) for the in-
stability threshold and especially for the reproduction of
the observed transverse beam along the beam tail.

In short bunches space charge can lower the threshold for
the fast head-tail instability. This has been verified within
analytical and numerical models using linear space charge
forces [9, 27]. In Ref. [27] a strong transverse emittance
increase below the instability threshold was observed in the
simulations that was attributed to the interaction of space
charge and the broadband impedance.

CONCLUSIONS

Space charge can strongly affect the damping mecha-
nisms and so the impedance budget in high current ring
machines. In our review we showed that the loss of Lan-
dau damping due to the space charge induced incoherent
tune shift can lower the threshold currents for the coast-
ing beam transverse resistive wall instability and for lon-
gitudinal dipole instabilities in nonlinear rf buckets. Pos-
sible cures are external damping systems. In order to re-
store Landau damping a reactive feedback might be suffi-
cient, which could be used also to stabilize the space charge
driven dipole instability in flat-topped bunches. Another
cure is to increase the momentum spread. In case of a

tight budget for the tolerable momentum spread blow-up,
like in SIS 100, another option is to increase the incoher-
ent frequency spread by external nonlinear focusing fields.
However, in case of longitudinal dipole modes in double rf
waves, one finds that the increase in synchrotron frequency
spread cannot become effective in the presence of space
charge. A potential cure for the transverse resistive wall in-
stability are octupoles in combination with nonlinear space
charge. Simulation scans show that the effect of nonlin-
ear space charge is not as strong as predicted by a simpli-
fied dispersion relation. With regard to microwave instabil-
ities different effects have been identified that can suppress
the instability in long (’coasting beam modes’) and in short
bunches (’head-tail modes’).
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