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Abstract

The classical Tonks-Langmuir one dimensional (1D)
free fall ion model of sheath is adapted and generalized to
two dimensional (2D) geometries, giving a rigorous base
to ion tracing codes. The reduction of integro-differential
equations to a coupled system of partial differential equa-
tion (PDE), suitable for 2D applications, is performed. The
distinction between plasma core and frontal plasma is natu-
rally introduced. Numerical results of this model (still lim-
ited to positive ion case for simplicity) and comparisons
with an ad hoc developed tracing code are given.

INTRODUCTION

In the context of negative ion sources proposed for neu-
tral beam injectors (NBI) for tokamaks, halo of the ex-
tracted beam is large ( typically 10 %) and optimum shape
of the multiaperture plasma grid electrode (PG) is a matter
of experimental and theoretical research. Halo depends on
electrode edges and on the nearby distortion of the charge
sheath layer, so that this article discusses preliminary issues
of sheath modelling in 2D.

Two major aspects of ion extraction modelling are evi-
dent. First, the generation processes of negative ion show
some shortcomings: volume production seems low; wall
production is large, but ions have wrong directions and/or
large nonuniformity in current density; elastic scattering of
wall generated ions into the extraction direction must com-
pete with mutual neutralization. The detail of electrostatic
field and ion trajectories depend strongly on the extraction
shape.

Second, in the negative ion extraction case, the plasma
sheath charge has to be negative on the extraction hole sur-
face and positive on the nearby wall surface, which en-
hances beam aberration near hole edge.

In the next section, we recall some of the processes in-
volved in negative ion generation and diffusion. In another
section, the free-fall ion model is simplified[1] and the the
plasma core-front model[2] is summarized; results of its
implementation with a standard multi-physics code[3] are
reported in the last section.

NEGATIVE ION COLLISIONS

In a negative ion source the gas density is of the order
of ngm = 1020 atom/m3 (corresponding to a maximum
pressure pgm = 0.2 Pa of H2 at STP); consequently elec-
tron temperature is limited to few eV [4] and reduces below
1 eV near the plasma grid when a magnetic filter is present.
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Many collisional effects directly affects the H− fate and
source performance. These includes: (a) generation at a
rate G−; (b) electron detachment in collision against H2 and
H; (c) charge transfer against H (which is mostly benefic,
since it scatters the ion H− towards extraction with a prob-
ability of the order of 50 %); (d) Coulomb collision against
H+ or H+

3 , with similar effects; (e) mutual neutralization
with H+ or H+

3 ; (f) polarization scattering with H2. To
simplify notations, let assume the gas targets to be at rest,
with mass mt, charge it and let E− be the incoming H−

kinetic energy, equal to E1 = 1 eV in the examples. Note
that the momentum cross sections σb, σc, . . . are more eas-
ily estimated and measured for E− � 1 eV, so some ex-
trapolation is here used. Let m− and v− be the H− mass
and speed, mu the atomic mass unit; and K = σv− the rate
constants.

Electron detachment cross section σb is very modest (or-
der of 1 Å2) and Langevin polarization scattering cross sec-
tion is moderately low (order of 30 Å2). On the contrary,
for resonant charge transfer between H and H−, consider-
ing the estimate σc = 225 Å2 at E− = 0.05 eV [5] and the
data (and formulas) for much larger E−, we have

σc
∼= π[a0(c0 +c1Log[E−/E1]+c2Log[E−/E1]2)]2 (1)

with Log the decimal logarithm, a0 the Bohr radius, the
constants c0 = 13.62, c1 = −2.135 and c3 = −0.239.
This gives σc = 163 Å2 at 1 eV, and σc � σb in the E−
range of our interest (up to 20 eV).

Coulomb collision cross section σd is even larger:

σd = πb2
0[

1
4 + 8

π2 ln Λ], b0 =
e2it(mt + m−)

4πε0E−mt
(2)

with ln Λ = 10; this gives σd = 2180 Å2 for H+ and
σd = 970 Å2 for H+

3 .
For mutual neutralization [6] against H+ and E− < 10

eV, we use a simple power law Ke
∼= (E−/E1)−0.191.2×

10−13 m3/s (corresponding to a cross section σe
∼= 870 Å2

at E− = 1 eV). Summing on all species, we estimate total
recombination rate as Ken+n−.

THE PLASMA CORE-FRONT MODEL

When an ion produced at walls is scattered at a point z i

we consider that an ion is produced at z i (with a large ve-
locity spread) and an ion is of course absorbed. Let G be
the generation rate of ions, that is the number of ions (mul-
tiplied by charge state i) produced per unit volume and time
by ionization or by scattering. The ion density n i(z) ≡ �/e
is

∫
d3ziG(zi)M/|v(z, zi)| where M takes into account

motion and adsorption. In one-dimensional cases, if colli-
sions are strong, M = 1

2 exp(|z−zi|/λi) with λi the mean
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free path; when collisions are neglible, we set M = 1 for
z > zi (with z-axis oriented in the prevailing motion direc-
tion), which is the free-fall 1D model [1].

Let z = 0 and φ = 0 at the plasma electrode (see fig. 1),
where φ is the electric potential; the lateral wall may have a
small bias Vb while a large voltage Ve is applied to a puller
electrode. To fix the ideas, let us consider the positive ion
extraction case here (O2+in detail), so that electrons are
repelled by the extraction hole and may approach thermal
equilibrium [7]; for simplicity we consider a one tempera-
ture distribution, so that electron density is

ne = ne0 exp(−u) , u = −e(φ− Vp)/Te (3)

where Te is the temperature (in energy units), ne0 the den-
sity at plasma center where φ = Vp, known as plasma po-
tential. Note that u = uw = eVp/Te at plasma electrode
and uw will be determined by the solution (and balance of
ion and electron currents). Poisson equation becomes:

−� u = λ

(
ne

ne0
− ni

ne0

)

(4)

where λ = 1/λ2
D = ne0e

2/Teε0 is the strength of nonlin-
ear terms and λD the Debye length. The ion speed vz is
conveniently written as

vz =
√

2ei

mi
[φ(zi)− φ(z)] = cs

√
2
√

u(z)− u(zi) (5)

with the Bohm speed cs =
√

Te/M and the specific mass
per charge M = mi/|i|, where mi is the ion mass. The
generation density is parametrized as G = νio ne0 g with
νio = Kiong the ionization frequency (ng primary gas den-
sity and Kio ionization rate constant) and g a form factor.
Precisely g = (ne/ne0)γ = e−γu with γ = 1. The cases
γ = 0 and = 2, as well as M = (zi/z)β, are also of some
interest[8]. The ratio ni(z)/ne0 becomes a canonical inte-
gral expression

νio√
2cs

∫ z

zp

dzig(zi)√
u(z)− u(zi)

=
∫ s

0

dsig(si)√
u(s)− u(si)

≡ I(u)

(6)
changing variable to s = (z − zp)/L, with zp the plasma
center. The length L =

√
2cs/νio is the order of magnitude

of plasma length needed to produce enough ions.
In typical simulation programs[9], note that n i has to

be determined by a sum of particle trajectories starting at
user assigned positions; to obtain consistency, the elec-
tron charge density is empirically corrected as ne =
niαp exp(−u) with 0 < αp < 1 an input parameter to ad-
just the Vp user guess. Other simulation programs[10, 11]
use eni = kf [(Vp − φ)2 + V 2

I ]−1/4 or similar, with kf de-
termined from measured extracted ion currents, Vp guessed
as before and VI � Vp a cutoff to avoid zero division at
Vp = φ. While eq. 6 prevents this problem and proves that
u,s > 0 for s > 0, its application and generalization to real
2D geometries is a difficult task. With u and s as variable,

from eq. 4 the complete plasma equation is[1, 8]:

1
2α2 ∂2u

∂s2
= I(u)− exp(−u) , α =

√
2λD

L
� 0.01

(7)
where the lefthand side is a small perturbation only for u�
ubreak

∼= 0.854; this is called the plasma regime, where
s(u) = s0(u) + α2sp(u) + . . .. In the sheath regime u �
ubreak the Child solution s ∝ u3/4 is retrieved, and the
intricate intermediate regimes are described elsewhere[7].

We call the region s ≤ sa ≡ s(ua) the plasma core,
whose boundary values or reference values:

ua = 1
4 , s′a ≡ s′(ua) , u′(sa) = 1/s′a , um = 1

12
(8)

can be computed analytically, and therefore plasma core
does not need to be included in simulation; um is the aver-
age of u in plasma core. Thickness of the remaining plasma
region, called the front plasma, can be easily estimated as
L(sw−sa) and will be numerically solved as a free bound-
ary problem, subject to condition eq. 8. Here sw ≡ s(uw);
initial estimate of sw and uw from known 1D tables is
standard[8]. Typically, sa

∼= 0.30 and sw = 0.5 ± 0.1
and uw = 5 ± 1. The main integral I(u) divides into two
parts I(u) = I1(u, ua) + I2(u, ua) for u ≥ ua, defined as

I1 =
∫ sa

0

dsig(si)√
u(s)− u(si)

, I2 =
∫ s

sa

dsig(si)√
u(s)− u(si)

(9)
It can be proven I1 = I10 + (α2/π)I12 + O[α2], where

I10 =
2
π

⎛

⎝e−uAsin

√
ua

u
+

√
ua(u − ua)

∑

j=0

uj
abjf

b
j (u)

⎞

⎠

(10)
with f b

0 = (1 − e−u)/u, f b
1 = (1 − u − e−u)/u2 and so

on. We keep terms up to b0 = 1, b1 = 2/3, b2 = 1/2 for
10−5 accuracy. Expression for I12 is similar.

After a change of variable from si to ui = u(si), the
integral I2 can be approximately divided in three terms,

I2 =
jF√

u− uc
+ I2L + I2H jF =

∫ s

sa

dsig(si) (11)

where uc is a sort of central (or average) value between ua

and u, chosen as uc(u) = u∞ + [a/(u + b)], with u∞ =
0.592, a = −2(u∞−ua)2, b = 2u∞−3ua. Moreover, note
that jF is the ion current produced in the frontal plasma
(divided by ene0cs

√
2), and

I2H =
∫ u

uc

dup g(up)
(

1√
u− up

− 1√
u− uc

)
∂s

∂u

∣
∣
∣
∣
up

(12)
and similarly for I2L, but with integration range [ua, uc].
From series expansion of s,u at up = u we get I2H

∼=
IH
21u

−1
,s − IH

22u,ssu
−3
,s + ...; while I2L estimate is more in-

tricate, but smaller.
Now, as a first generalization to jF definition eq. 11, we

add deionization losses (with frequency ν d
m) and transverse
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diffusion in an uniform axial magnetic field B0, with the
approximation of frozen transverse motion:

djF

dz
= S(jF ) ≡ g

L
− jF

La
+

1
Ld

∂2jF

∂y2
(13)

where La = vz/νd
m is the absorption length, Ld =

2vz/Rνm is the transverse diffusion length, νm is the to-
tal (momentum) collision frequency and R = 1/(1 +
(Ωi/νm)2 is factor depending on the ion cyclotron fre-
quency Ωi = eB0/M . With the finer approximation of
a laminar transverse motion like y = y0a(z), we have

∂jF

∂z
+ y

a′(z)
a(z)

∂jF

∂y
= −a′(z)

a(z)
jF + S(jF ) (14)

Note that halo space charge is still missing here. Finally,
particle motion equations in scaled variables are

∂2y

∂�2
= u,y + k̃A(y0 − y) ,

∂2z

∂�2
= u,z (15)

where � = tcs is a length and k̃A = e2B2
0

MTe
=

(
Ωi

cs

)2

. In

cylindrical symmetry, the first equation changes to

∂2y

∂�2
= u,y + k̃A

(y4
0 − y4)
4y3

(16)

NUMERICAL SIMULATIONS

A multi-physics code [3] can solve Eq. 4 for u, when
it is controlled by scripts (now named ’planar2init.m’ and
so on), specifying the nonlinear terms as eq. 10. Together
with u we can solve eq. 13, which is still in PDE form; u
and jF are fields of a coupled PDE system. A third field
arises from the free boundary eq. 8. For numerical sta-
bility reasons, script slowly solves this equation iteratively,
allowing a limited boundary deformation; in the same it-
eration, uw value is refined. Some ion tracing is done at
the end. In total, we have about 50 kbytes of application
scripts[2], running in about 150 s on a 3.4 GHz P4 com-
puter. As evident in eq. 8 and 11, the particle start condi-
tion is determined (approximately) in the plasma core-front
model. In fig. 1 note the aberration of outer rays, and the
distortion of φ,z near (0, rh), originating the halo.

On the contrary, particle tracing codes require the spec-
ification of the particle starting conditions. With a care-
ful choice of proton and electron starting conditions, a self
consistent solution for the electrostatic potential φ can be
found with a PIC code (see fig 2), from which the plasma
potential Vp is obtained. Negative ions may then be added
as a test beam, since their contribution to the space charge
is small. Fig 2 also emphasizes that the aberrations of the
H− beam due to the PG geometry and the strong field gra-
dients at extraction are even larger than the positive ion
case. Work to optimize the PG shape and to include the
smoothing effects of collision on the extracted beam is in
progress. Also we plan to export eq. 8 particle start condi-
tions to this and other codes.
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Figure 1: O2+ trajectories (thick lines) from a tenuous
plasma (λD = 1.69 mm, L = 30 mm): region bound-
aries (thick lines); equipotential of u and φ (thin lines);
dimension in mm; uw = 4.21 and extraction potential
ue = 82.56, that is 1.3 times the Child voltage. Defor-
mation of u = ua boundary (about 0.1 mm) is not plotted.

Figure 2: Example of H− extraction from plasma for sev-
eral position of the generation site. Ion trajectories in black;
scaled potential V ′ = φ/Vp in color (or gray tones). Left
panel: start in volume plasma near PG; right panel: start on
the PG backside; lower panel: start on the PG extraction
hole border. Dimension in mm, with d = 10 mm.
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