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Abstract

The Renormalization Group (RG) method is adopted as
a tool for a constructive analysis of the properties of the
Frobenius-Perron Operator. The renormalization group re-
duction of a generic symplectic map in the case, where the
unperturbed rotation frequency of the map is far from struc-
tural resonances driven by the kick perturbation has been
performed. It is further shown that if the unperturbed ro-
tation frequency is close to a resonance, the reduced RG
map of the Frobenius-Perron operator (or phase-space den-
sity propagator) is equivalent to a discrete Fokker-Planck
equation for the renormalized distribution function. Some
concrete examples have been worked out.

INTRODUCTION

Recursive maps represent a useful and powerful tool to
model and to facilitate the understanding of the physical
processes taking place in complex nonlinear systems. In
particular, they are widely used to study the various tran-
sition scenarios from regular to chaotic behaviour in non-
linear dynamical systems, to simulate physical systems ex-
hibiting anomalous diffusion [1], or to analyze the underly-
ing dynamics in time series with 1/f noise in their power
spectrum [2]. Iterative maps provide a convenient and ef-
fective method to investigate single-particle dynamics in
accelerators and storage rings [3, 4].

The extremely complicated behaviour of specific tra-
jectories in chaotic systems suggests a probabilistic ap-
proach to the dynamics. The Frobenius-Perron operator
of a phase-space density (distribution) function provides a
tool for studying the dynamics of the iteration of the dis-
tribution function itself. The iterative map yields complete
information of how the value of an individual phase-space
point jumps around during successive iterations, so that one
gets a good sense of the point dynamics but no sense of
how iteration acts on densities with support on sets in phase
space. The latter gap is filled by the Frobenius-Perron oper-
ator, which provides a rule to determine how the evolution
of densities over repeated iterations is accomplished.

Here we adopt the Renormalization Group (RG) method
to analyze the properties of the Frobenius-Perron Operator.
The basic idea of the method is to absorb secular or di-
vergent terms of the naive perturbation solution into renor-
malized integration constants (amplitudes). The stages in
the renormalization group reduction of a particular physi-
cal system are quite general and well defined, which makes
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THE FROBENIUS-PERRON OPERATOR
FOR THE HENON MAP

The Henon map is defined by the following expression
[3]:

zn+1 =
(

xn+1

pn+1

)
= Rω

(
xn

pn − Sx2
n

)
, (1)

where

Rω =
(

cosω sinω
− sinω cosω

)
, (2)

is the rotation matrix for one period of the map, which is
equivalent to one revolution along the accelerator lattice.
The frequency ω and the parameter S

ω = 2πν, S =
lλ0(θ0)β3/2(θ0)

2R3
, (3)

are related to the unperturbed betatron tune ν and to the
strength of the sextupole (cubic nonlinearity) perturbation
λ0. Here l is the length of the sextupole, θ0 is its location
on the azimuth of the machine and R is the mean radius.

The Henon map can be alternatively written as

Zn+1 = RT
ωzn+1 =

(
xn

pn − Sx2
n

)
, (4)

where RT
ω denotes the transposed of the matrix (2). The

Frobenius-Perron operator [3] can be calculated explicitly.
We have:

fn+1(x, p) = Ûfn(x, p) = fn

(
X, P + SX2

)
. (5)

Introducing the formal small parameter ε and the action-
angle variables x =

√
2J cos a, p = −

√
2J sina, we write

the Frobenius-Perron operator represented by equation (5)
in the form

fn+1(a + ω, J) = fn

(
x, p + εSx2

)
. (6)

RENORMALIZATION GROUP
TREATMENT OF THE

FROBENIUS-PERRON OPERATOR
The generalization of the Frobenius-Perron operator (6)

for a generic symplectic map with rotation is straightfor-
ward. We have

fn+1(a + ω, J) = fn(x, p + ε∂xVN ), (7)

the RG method universal and independent on the concrete
details of the underlying dynamics and physical processes
involved. [3, 5, 6]

where VN (x) is a potential and ∂x denotes partial differen-
tiation with respect to x. Equation (7) can be written as

fn+1(a + ω, J) = eε(∂xVN )∂pfn(a, J). (8)

Since the potential VN does not depend on the momen-
tum variable p, we have L̂V = (∂xVN )∂p − (∂pVN )∂x =
(∂xVN )∂p, where L̂V is the Liouvillean operator associ-
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ated with VN . Therefore, equation (8) becomes

fn+1(a + ω, J) = eεL̂V fn(a, J). (9)

We assume that the potential VN , written in action-angle
variables can be split as follows VN (a, J) = V0(J) +
V (a, J). Respectively, the Liouvillean operator can be
written as L̂V = L̂0 + L̂, where L̂0 = −ωV (J)∂a, and

L̂ = (∂aV )∂J − (∂JV )∂a, ωV (J) =
∂V0

∂J
. (10)

First of all, we consider the case, where the rotation fre-
quency ω is away from nonlinear resonances driven by the
potential V . Following the standard procedure of the RG
method [3, 5], we seek a solution to equation (9) by naive
perturbation expansion

fn(a, J) =
∞∑

k=0

εkf (k)
n (a, J), (11)

where the unknown functions f
(k)
n (a, J) have to be deter-

mined order by order. The zero-order perturbation equa-
tion f

(0)
n+1(a + ω, J) = f

(0)
n (a, J) has the obvious solution

f
(0)
n (a, J) = e−nω∂aF (a, J) = F (a− nω, J). To this end

F (a, J) is an arbitrary function of its arguments, and will
be the subject of the renormalization group reduction in the
sequel.

The first-order perturbation equation can be written as
follows f

(1)
n+1(a + ω, J)− f

(1)
n (a, J) = L̂V F (a− nω, J).

Standard but cumbersome algebra yields its the solution in
the form

f (1)
n (a, J) =

(
nL̂0 + L̂ω

)
F (a− nω, J), (12)

where L̂ω = (∂aVω)∂J − (∂JVω)∂a. Furthermore, the po-
tential Vω(a, J) is defined according to the expression

Vω(a, J) =
∑
m �=0

Vm(J)eim(a−ω/2)

2i sin (mω/2)
. (13)

The second order equation is

f
(2)
n+1(a + ω)− f (2)

n (a) = L̂V f (1)
n (a) +

L̂2
V

2
F (a− nω).

(14)
Since we are interested in the secular solution of equa-
tion (14), we retain on its right-hand-side only terms that
would yield a secular contribution. Omitting the details of
the calculation and the non secular terms, we can write the
second-order solution as

f (2)
n (a, J) =

[
n2

2
L̂2

0 + nL̂ωL̂0 + nΩ(ω, J)∂a

]
F (an, J),

(15)where an = a− nω and

Ω(ω, J) =
∞∑

m=1

m cot
(mω

2

)
∂J(Vm∂JVm). (16)

To remove secular terms (proportional to n and n2) in
the first-order and the second-order solution (15), we de-
fine a renormalization group transformation F (a, J) →
F̃ (a, J ; n) by collecting all terms proportional to F (an, J).

Following Reference [3, 6], we define a discrete version of
the RG equation by considering the difference

F̃ (an, J ; n + 1)− F̃ (an, J ; n)

=
{

εL̂0 + ε2
[(

n +
1
2

)
L̂2

0 + Ω∂a

]}
F (an, J). (17)

Eliminating F (an, J) in terms of F̃ (an, J ; n), we finally
obtain

F̃ (n + 1)− F̃ (n) =

[
εL̂0 + ε2

(
L̂2

0

2
+ Ω∂a

)]
F̃ (n).

(18)
Equation (18) is the RG equation. It describes the evolution
of the distribution function on slow time scales in addition
to the fast oscillations with a fundamental frequency ω.

To first order in the perturbation parameter ε the
renormalized solution to equation (9) can be written as

fn(a, J) =
(
1 + εL̂ω

)
F̃ (an, J ; n), where the renormal-

ized ”amplitude” F̃ (an, J ; n) satisfies the RG equation
(18). In the continuous limit equation (18) acquires the
form

∂nF̃ (an, J ; n) =

[
εL̂0 + ε2

(
L̂2

0

2
+ Ω∂a

)]
F̃ (an, J ; n).

(19)

Provided L̂0 �= 0 (in the case, where the potential VN is
not antisymmetric) the latter is a Fokker-Planck equation
with the Fokker-Planck operator acting on the angle vari-
able only.

RESONANCE STRUCTURE OF A
SYMPLECTIC MAP

The solution (12) to the first-order perturbation equa-
tion was obtained under the assumption that the unper-
turbed betatron tune ν is sufficiently far from any struc-
tural nonlinear resonance of the form m0ν = 1, where
m0 is an integer. In the present paragraph, we assume that
ω = ω0 + εδ1 + ε2δ2 + . . ., where m0ω0 = 2π. More-
over, for the sake of simplicity, we assume that there are no
higher angle-dependent harmonics in the Fourier spectrum
of V (a, J) that would drive higher-order resonances of the
form pm0ν = p, where p is an integer. However, results
can be generalized easily to take into account this case as
well.

Proceeding as in the previous paragraph, we can calcu-
late the naive perturbation solution to second order in ε.
Repeating the steps that brought us along to equation (18)
in the previous paragraph, we obtain the RG equation in the
resonant case

F̃ (an, J ; n + 1)− F̃ (an, J ; n)

=
{

ε
(
L̂1 + L̂R

)
+ ε2

[
(Ω′ − δ2)∂a +

δ1

2

[
L̂R, ∂a

]

+
1
2

(
L̂1 + L̂R

)2
]}

F̃ (an, J ; n), (20)
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where now an = a−nω0. Here
[
L̂R, ∂a

]
= L̂R∂a−∂aL̂R

is the commutator of the operators L̂R and ∂a, and

Ω′(ω0, J) =
∞∑

m �=m0

m cot
(mω0

2

)
∂J(Vm∂JVm). (21)

is the new nonlinear tune shift. In addition, L̂1 = −δ1∂a +
L̂0, and L̂R = (∂aVR)∂J − (∂JVR)∂a is the resonant Li-
ouvillean operator, where

VR(a, J) =
∑

m=±m0

Vm(J)eima = 2Vm0(J) cosm0a,

(22)
is the resonant potential.

EXAMPLES

Let us now consider a few examples. In the non

resonant case of the Henon map
(
L̂0 ≡ 0

)
equation

(19) can be written in the form ∂nF̃ (an, J ; n) =
ΩH(a, J)∂aF̃ (an, J ; n), where

ΩH(ω, J) =
S2J

8

[
3 cot

(ω

2

)
+ cot

(
3ω

2

)]
. (23)

The above equation for F̃ (an, J ; n) written in alternative
form ∂nF̃ (a, J ; n) = [−ω + ΩH(a, J)]∂aF̃ (a, J ; n), de-
scribes regular motion with a frequency ω − ΩH , and ef-
fective Hamiltonian

Heff (J) = ωJ−S
2

16

[
3 cot

(ω

2

)
+ cot

(
3ω

2

)]
J2. (24)

The next example we would like to consider is the case
of a cubic map with a potential of the form VN (x) =
Cx4/4. We also have

V0(J) =
3CJ2

8
, V (a, J) =

CJ2

2
cos 2a +

CJ2

8
cos 4a.

(25)

L̂1 = −δ1∂a, and Ω′(ω0, J) =
√

3S2J/8. In the continu-
ous limit equation (20) can be written as

∂F̃

∂n
= −(ω − Ω′)∂aF̃+L̂RF̃+

1
2

(
L̂2

1 + 2L̂1L̂R + L̂2
R

)
F̃ ,

(29)

where L̂R = −S
√

2J[2J sin (3a)∂J + cos (3a)∂a]/4, and
the renormalized distribution function F̃ = F̃ (a, J ; n) is a
function of the phase-space variables and the ”time” n.

Equation (29) is a Fokker-Planck equation describing the
slow evolution of the phase-space density in the case where
the rotation frequency of the Henon map is close to a third
order resonance.

CONCLUDING REMARKS
We have applied the Renormalization Group (RG)

method to study the stochastic properties of the Frobenius-
Perron operator for a variety of symplectic maps. After a
brief introduction and derivation of the Frobenius-Perron
operator for a generic symplectic map with rotation, the
case, where the unperturbed rotation frequency of the map
is far from structural resonances driven by the kick per-
turbation has been analyzed in detail. It has been shown
that up to second order in the strength of the perturbation
kick, the renormalized propagator for maps with nonlin-

ear stabilization
(
L̂0 �= 0

)
describes random wandering of

the angle variable. Further, the resonance structure of a
symplectic map has been investigated. It has been shown
that in the case, where the unperturbed rotation frequency is
close to a resonance, the reduced RG map of the Frobenius-
Perron operator (or reduced phase-space density propaga-
tor) is equivalent to a discrete Fokker-Planck equation for
the renormalized distribution function.

Furthermore, the nonlinear tune shift can be expressed ac-
cording to the expressions ωV (J) = 3CJ/4, ΩC(ω, J) =
3C2J2(8 cotω + cot 2ω)/32. Thus, equation (19) can be
written as

∂nF̃ (a, J ; n) = −ω̃∂aF̃ (a, J ; n) +
ω2

V

2
∂2

aaF̃ (a, J ; n),
(26)

where

ω̃(ω, J) = ω + ωV −
3C2J2

32
(8 cotω + cot 2ω). (27)

Equation (26) can be readily solved, yielding the result

F̃ (a, J ; n) =
∑

k

F̃k(J ; 0)eik(a−nω̃)e−k2ω2
V n/2. (28)

The latter indicates that the renormalized distribution func-
tion F̃ (a, J ; n) rapidly relaxes towards the invariant den-
sity F̃0(J).

To study the resonance case for the Henon map, we as-
sume that the unperturbed betatron tune is close to a third
order resonance 3ν0 = 1. In this particular case, we have
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