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Abstract 

The TME (Theoretical Minimum Emittance) cell is 
being used now for designing the lattice of different 
storage rings (SR sources, damping rings, FFAG 
accelerators, etc.). Strong sextupoles required to correct 
the natural chromaticity of the lattice reduce the dynamic 
aperture. In the paper we consider the main features of the 
nonlinear perturbation strength and its connection with 
the essential lattice parameters: horizontal emittance, 
betatron tunes, and natural chromaticity. The analytical 
results are compared with the computer simulation. 

INTRODUCTION 
Each author should submit all of the source files (text 

and figures), the postscript file and a hard copy version of 
the paper. This will allow the editors to reconstruct the 
paper in case of processing difficulties and compare the 
version produced for publication with the hard copy. 
The ТМЕ lattice [1] has recently become popular in 
designing accelerators for different applications [2,3,4]. 
Linear optical properties of this lattice have been 
investigated well and can be found elsewhere. In 
particular, a thorough and detailed report [5] describing 
application of the ТМЕ cell for linear collider damping 
ring design is worth mentioning.  

Below we study features of nonlinear motion of a 
particle in the TME lattice, especially the relation 
between the strength of nonlinear perturbation and such 
characteristics of circular accelerator as horizontal 
emittance, natural chromaticity, betatron tunes, etc. 
Chromatic sextupoles are assumed to be the main source 
of nonlinear perturbation and only transverse motion is 
considered.  

The main (resonant) azimuthal harmonics are used 
below for estimation of the sextupole perturbation 
strength and its relations with essential accelerator 
parameters. Earlier, a similar approach was used in [6] to 
study the DBA synchrotron light source lattice. 

RESONANT HARMONICS 
An azimuthal Fourier expansion of the sextupole 

Hamiltonian for single particle motion has the form 
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where Rs /=θ  is the azimuthal angle (an independent 
variable), R is the average orbit radius and the five types 
of harmonics ( 3,1=j ) 
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represent the main structural resonances. Sextupoles are 
considered as point-like objects with the normalized 
integrated strength 

mlk )( 2
, and the values subscribed by 

"±" have the form
yx ψψψ 2±=±
, etc. Due to the ТМЕ-cell 

reflection symmetry (Fig.1), the above Hamiltonian 
expansion contains cosine terms only. 

 
Fig. 1 Schematic layout of the ТМЕ cell. 

The strength of the sextupole magnets compensating 
natural chromaticity ( )yx ξξ ,  is determined by the equations 

( )∑ =+
m

mxmmx lk 04 2 ηβπξ ,    ( )∑ =+
m

mzmmz lk 04 2 ηβπξ ,    (3) 

where )(sη  is the horizontal dispersion function. Below 
we consider the N-th resonant harmonics for which the 
cosine phase in (2) varies very slowly. Starting 
with

NA1
and take into account ( ) 0≅− θν Nx

, we can obtain 
the following relation (the subscript N is omitted) 
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For further simplification we consider the well-known 
Н-function 

22 2 ηβηηαηγ ′+′+= xxxH . 

As the dispersion function obeys the free betatron 
oscillations equation outside the bending magnets, in this 
region constH =  just like the Courant-Snyder invariant 
and we can use a Floquet transformation for the 
dispersion function [7] 

22 baH e += , 

xeHa ψcos= ,          
xeHb ψsin= , 

where 
xψ  is the betatron phase advance. Substituting 

xex H ψηβ cos/1/ =  in (4) and taking into account 
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constHsH e ==)(  (where 
eH  is the function value at the 

edge of the bending magnet) we obtain  
( )∑≅
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and with (3) the following simple estimation for the 
resonant harmonic 

nA1
 can be found 
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A similar relation can be obtained for the harmonic 
NB1

 
by substituting 

yξ−  instead of 
xξ  (from the second 

equation in (3)). Assuming the betatron phase advance 
small (which is correct for the compact ТМЕ-cell): 

1, <<Δ yxψ , we can obtain the following estimation for all 
fundamental harmonics 
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It is necessary to remind, however, that the dynamic 
aperture size depends not only on the magnitude of 
harmonics but also on the betatron tune point. In general, 
such dependence is not known but near strong resonances 
the dynamic aperture can be found via consideration of 
the corresponding separatrix and fixed points. For 
example, in the simplest case of the resonance Nx =ν3  
excited by the harmonic

NA3
, which restricts the horizontal 

motion only, position of an unstable on-axis fixed point 
( )0,0 =≠ xuu px  is given by 
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where 
0xβ  are the betatron functions at the observation 

point. Similar relations can be found for other structural 
sextupole resonances and though these expressions might 
be much more complicated than (8), especially for 2D 
resonances, the DA size for all cases is also proportional 
to 

yxeH ,/ξ . 

RESONANT HARMONICS AND 
HORIZONTAL EMITTANCE 

The equilibrium horizontal emittance in an electron 
storage ring is given by the balance between quantum 
diffusion and radiation damping, which yields 
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where 131084.3 −×=qC m, 
xJ  is the horizontal partition 

number, ρ  is the magnetic field curvature radius, and 

m
sH )(  is the H-function averaged over the bending 

magnets. Taking )(),(),( sss ηαβ and )(sη′  for a focusing-
free bending magnet, with the length L and the bending 
angle θ we obtain 
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where 
0β  and 

0η  are the values of the betatron and 
dispersive functions at the bending magnet center. By 
minimizing (10) a well-know expression for the TME 
minimum emittance 

min0xε  can be found for particular 
values of 

min0β  and 
min0η at the bending magnet center. 

Using the following scaling 
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one can find the ratio between 
eH  and H  
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Now, considering the resonance harmonics (7) and 
taking as a hypothesis the general expression for the 
boundary of the stable motion (8), we obtain 
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(14) 
where 

0xσ  is the beam size at the DA observation point. 
The factor of proportionality in (14) depends on the 
betatron tune point ( )yx νν ,  and damping characteristics. 

The function )( rg ε  may be written with the help of [8], 
where the relations  

rr εβ = ,         1
5

21 2 −+= rr εη , 

are derived subject to the condition max)( =rr βη . Then 
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It can be seen from the plot of )( rg ε  that in the 
practical range of emittance detuning, starting from 

5.1~rε , this function does not deviate significantly from 
its average value, by ~±10% only, which means that the 
main contribution to the DA shrink with the horizontal 
emittance decrease (if the above hypothesis is true) is 
provided by beam size reduction and natural chromaticity 
increase. 

Moreover, when measured in the units of the standard 
beam size 

0xσ , the DA basically depends on the natural 
chromaticity (beside, of course, the explicit dependence 
of the proportionality factor on the betatron tunes, which 
yields a zero dynamic aperture at strong sextupole 
resonances). 

COMPUTER SIMULATION 
In order to prove the results of analytical estimation, a 
computer simulation of the TME cell has been performed. 
Quadrupole magnets varied betatron phase advance in the 
range of 0÷2π and two families of sextupole magnets 
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corrected natural chromaticity at each tune point. Particle 
tracking for 500 turns has been performed and the DA 
size was obtained. During the betatron tune scan, the 
following values were calculated and stored: natural 
chromaticity and strength of sextupole magnets necessary 
to correct it; horizontal emittance; five basic resonance 
driving terms found from the Fourier analysis of the 
tracking results; DA size and shape. 

Fig.2 shows the natural chromaticity behavior (for one 
lattice cell) as a function of the horizontal betatron tune 
for a fixed value of vertical tune. Hereinafter the grey 
band around the value 5.0=xν  indicates a region 
optically unstable due to the half-integer resonance. An 
increase in horizontal focusing results in growth of 
chromaticity.  

 
Fig.2 Natural horizontal (boxes) and vertical (diamonds) 
chromaticity of the ТМЕ cell. 

 
Fig.3 Horizontal emittance: simulation and estimation 
with (9) – (10). 

The horizontal emittance as a function of the horizontal 
betatron phase advance is shown in Fig.3. The focusing 
strength increase enables reduction of emittance by ~3 
orders of magnitude, and the minimum is attained in the 
vicinity of 66.0≈xν . With further focusing strengthening, 
the emittance keeps growing, demonstrating emittance 
minimization relation (10). 

Now, to validate our numerical simulation against the 
analytical model (14), we construct the following function  

x

x
xc constA

ξ
σ 0⋅=  

and plot it against the simulated horizontal DA. One can 
see in Fig.4 reasonable correspondence of two plots 
except for the area of structural resonances. It means that 
the (horizontal) DA size in the TME lattice is really 

reduced with the beam size and with the natural 
chromaticity growing up. Strong sextupole resonances 
modify this behavior by its geometry factors (separatrix), 
which reduce the dynamic aperture additionally.  

 
Fig.4 Horizontal DA from computer simulation 
(diamonds) and that estimated with (14) (boxes). 

CONCLUSIONS 
Nonlinear features of the TME-cell lattice have been 
considered with accentuation on the relation between the 
strength of nonlinear perturbation due to chromatic 
sextupoles and fundamental characteristics of lattices 
(betatron phase advance, horizontal emittance and natural 
chromaticity). The estimation has shown that basically the 
dynamic aperture is proportional to the rms beam size and 
inversely proportional to the natural chromaticity. This 
general pattern of dynamic aperture is influenced by the 
fine structure of resonance lines, which provides 
additional reduction of the area of particle stable motion. 
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