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Abstract
Modern free-electron laser facilities, like FLASH at

DESY, require demanding techniques to characterize the
longitudinal charge distribution of the electron bunches that
drive the laser. One technique, called coherent radiation di-
agnostics, is based on the measurement of the far-infrared
radiation spectrum and reconstruction of the bunch shape
through Fourier analysis. This paper gives a concise, math-
ematically explicit derivation of the principle of this tech-
nique.

RADIATION SPECTRUM FROM AN
ELECTRON BUNCH

The electric field in time-domain produced by a bunch of
N electrons is �E(t) =

∑N
i=1

�Ei(t) . If the time-dependence
of the field contributions from all electrons is identical ex-
cept for a time-delay, then �Ei(t)= �E1(t+Δti). The Fourier
transform of the total field reads

�E(ν) =
∑

i

∞∫

−∞

�E1(t + Δti)e−2πiνtdt =
∑

i

e2πiνΔti×

∞∫

−∞

�E1(t̃)e−2πiνt̃dt̃ = �E1(ν)
∑

i

e2πiνΔti. (1)

Equal time-domain behaviour of all electrons means that
they are uncorrelated. The far-field energy spectrum is

dU

dν
=

〈

2ε0c
∣
∣
∣�E(ν)

∣
∣
∣
2
〉

.

The angle brackets indicate the ensemble average: �E(ν) is
the field resulting from one particular microscopic distribu-
tion of particles while dU/dν is a macroscopic quantity.

The time delay between electron i and the reference elec-
tron 1 is Δti = (Ri −R1)/c, see Fig. 1. The far-field con-
dition requires the unit vectors �n and �ni to be parallel, so
Ri = R1�n · �ni − �ni · �ri ≈ R1 − �n · �ri. The time delay can
thus be written as Δti = −�k · �ri/(c k), with the wave vec-
tor �k = 2π�n/λ. The wavelength-dependent energy density
spectrum becomes

dU

dλ
=

(
dU

dλ

)

1

〈∣
∣
∣
∣
∣

∑

i

e−i�k·�ri

∣
∣
∣
∣
∣

2〉

,

where (dU/dλ)1 is the single-electron spectrum. Evalua-
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Figure 1: Designations for describing coherent radiation
from a bunch of electrons as observed at P.

tion of the ensemble average yields

〈∣
∣
∣
∣
∣

∑

i

e−i�k·�ri

∣
∣
∣
∣
∣

2〉

=

〈(
∑

i

e−i�k·�ri

)

·

⎛

⎝
∑

j

ei�k·�rj

⎞

⎠

〉

= N +

〈
N∑

i=1

e−i�k·�ri

〉 〈
N∑

j=1
j �=i

ei�k·�rj

〉

.

The normalized particle density distribution is defined by

S3d(�r) =
1
N

〈
N∑

i=1

δ(�r − �ri)

〉

=
1

N − 1

〈
N∑

j=1
j �=i

δ(�r − �rj)

〉

.

The equality of the ensemble averages follows from the fact
that the probability distributions of N and N -1 electrons
are identical due to our assumption of uncorrelated elec-
trons. Now

〈∣
∣
∣
∣
∣

∑

i

e−i�k·�ri

∣
∣
∣
∣
∣

2〉

=

N + N(N − 1)
∫

S3d(�r)e−i�k·�rd�r ·
∫

S3d(�s)ei�k·�sd�s.

The three-dimensional bunch form factor is defined by

F3d(�k) =
∫

S3d(�r)e−i�k·�rd�r. (2)

Only the longitudinal form factor, defined by

F (λ) =

∞∫

−∞

S(z) exp
(
−2πi

λ
z

)

dz, (3)

is usually accessible experimentally (see the last section for
a short discussion), where the longitudinal charge distribu-
tion is the projection of S3d(�r) onto the z axis: S(z) =
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∫
S3d(�r) dxdy. It derives from (2) if �k is along the z direc-

tion. Using this form factor the radiation spectrum becomes

dU

dλ
=

(
dU

dλ

)

1

(
N + N(N − 1) |F (λ)|2

)
. (4)

RECONSTRUCTION OF THE BUNCH
CHARGE DISTRIBUTION

The reconstruction of the longitudinal particle density
distribution S(z) by inverse Fourier transforming (3) is
not directly possible because only the magnitude of the
form factor can be measured through (4), not its phase.
The Kramers-Kronig relation1, first applied to longitudinal
bunch shape diagnostics in [2], can be utilized to determine
the phase within certain limitations. The derivation given
here follows the principles outlined in [3].

Since a shift of the bunch profile results only in an unim-
portant overall phase factor and the electron bunches are
of finite length, the profile can always be shifted such that
S(z) = 0 for z < 0 without loss of generality. Now the
definition of the form factor is extended to the complex fre-
quency domain using the complex frequency ν = ν r + i νi.
The exponential function exp(iαν) with a real coefficient
α can be easily shown to fulfill the Cauchy-Riemann equa-
tions with continuous partial derivatives and thus is an an-
alytic function of ν. In the form factor integral

F (ν) =

∞∫

0

S(z) exp
(
−2πiν

c
z

)

dz (5)

the exponential is multiplied with a real function S(z) that
does not depend on ν, therefore the form factor F (ν) is also
analytic in the entire complex frequency plane. Writing

F (ν) = ρ(ν)eiΘ(ν), ln F (ν) = ln ρ(ν) + i Θ(ν),

with real functions ρ(ν) ≥ 0 and Θ(ν), the two Cauchy-
Riemann equations for F (ν) can be expressed as

(
∂ρ

∂νr
− ρ

∂Θ
∂νi

)

cosΘ =
(

∂ρ

∂νi
+ ρ

∂Θ
∂νr

)

sinΘ
(

∂ρ

∂νi
+ ρ

∂Θ
∂νr

)

cosΘ =
(

− ∂ρ

∂νr
+ ρ

∂Θ
∂νi

)

sin Θ.

By multiplying the first equation with cosΘ and the second
with sinΘ and then subtracting both, the terms in brackets
are found to vanish individually. These are just the Cauchy-
Riemann equations for ln F (ν), which is therefore also an-
alytic as long as ρ(ν) does not vanish. Zeros in the form
factor are considered in [2, 4].

1In most general terms, the Kramers-Kronig relation connects the real
and imaginary part of a response function of a linear, causal system [1].
The connection to the bunch shape reconstruction problem is made by
writing (1) as �E(ν) = NF3d(ν)�E1(ν): �E1(ν) is the stimulus, �E(ν) the
response, and NF3d(ν) the response function. Conceptually, the stimulus
can be identified with the cause for radiation emission, e.g. the magnetic
field for synchrotron radiation or refractive-index changes for transition
radiation. Then �E(ν) is the response of the bunch to this stimulus.
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Figure 2: Integration contour C for the residue theorem.

The form factor vanishes at high frequencies and the log-
arithm will then diverge. For this reason an auxiliary func-
tion f(ν) is defined by

f(ν) =
(ν0ν − i2) ln F (ν)
(ν2 − i2)(ν0 − ν)

. (6)

The function f(ν) is a product of analytic functions and as
such analytic, except at the isolated singularities at ν = ν0

and ν = ±i.2

The residue theorem applied to the closed contour C
shown in Fig. 2 yields

∮
C f(ν)dν = −i π ln F (−i). Due to

the assumption that ρ(ν) does not vanish, the integrand has
only one pole at ν = −i inside the contour. The contour
integral can be broken down into integrals over the large
semicircle LSC, over the small semicircle SSC and a prin-
cipal value integral over the real axis, indicated by P :

∮

C

f(ν) dν =
∫

LSC

f(ν) dν +
∫

SSC

f(ν) dν +P
∞∫

−∞

f(νr) dνr.

The prerequisite that S(z) = 0 for z < 0 assures that
only positive z values appear in (5). This implies that the
form factor F (ν) is bounded in the lower half plane by
virtue of the real part of the exponential, exp(2πν iz/c): it
vanishes for νi → −∞. It also vanishes for |νr| → ∞ for
all practical cases, as the charge distribution will not con-
tain infinitely fine structures. It can thus be assumed that
ρ(ν) drops faster than some negative power at large |ν|,

ρ(ν) < b|ν|−α for |ν| → ∞,

with an exponent α > 0. This implies that the contour in-
tegral over the large semicircle LSC in the lower half com-
plex plane vanishes in the limit of an infinite radius:

lim
|ν|→∞

∣
∣
∣
∣
∣
∣

∫

LSC

f(ν) dν

∣
∣
∣
∣
∣
∣
≤ lim

|ν|→∞

π∫

0

|f(ν)| |ν| dϕ =

lim
|ν|→∞

παν0 ln |ν|
|ν| = 0 (ν = |ν|eiϕ) . (7)

2i in italics is defined by i = i s−1 to be dimensionally correct.
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The integral over the small semicircle, which is centered
at the real frequency ν0 > 0, can be evaluated by writing
f(ν) = g(ν)/(ν0−ν), where g(ν) is a continuous function
in the vicinity of ν0, and by setting ν0 − ν = ε eiϕ. In the
limit ε → 0

∫

SSC

f(ν) dν ≈ g(ν0)
∫

SSC

1
ν0 − ν

dν =

g(ν0)

0∫

π

1
εeiϕ

εeiϕ i dϕ = iπg(ν0) = iπ ln F (ν0).

Putting these results together yields

P
∞∫

−∞

f(νr) dνr + iπ ln F (ν0) = −iπ ln F (−i).

Taking the real part of this equation and using the fact, from
(5), that F (−i) is a real number yields

Θ(ν0) =
1
π
P

∞∫

−∞

(1 + νν0) ln ρ(ν)
(1 + ν2)(ν0 − ν)

dν,

where the index r has been dropped as only real frequen-
cies are involved from now on. The integration can be re-
stricted to positive frequencies by using the property of (5)
that F ∗(ν) = F (−ν) for real ν and hence ρ(−ν) = ρ(ν),
which implies

0∫

−∞

(νν0 − i2) ln ρ(ν)
(ν2 − i2)(ν0 − ν)

dν =

∞∫

0

(−νν0 − i2) ln ρ(ν)
(ν2 − i2)(ν0 + ν)

dν.

The result is

Θ(ν0) =
2ν0

π
P

∞∫

0

ln ρ(ν)
ν2
0 − ν2

dν.

The singularity of the integrand at ν0 can be removed by
subtracting the vanishing quantity

2ν0

π
P
∞∫

0

ln ρ(ν0)
ν2
0 − ν2

dν =

ln ρ(ν0)
π

lim
ε→0

(

ln
ν0 + ν

ν0 − ν

∣
∣
∣
∣

ν0−ε

0

+ ln
ν0 + ν

ν − ν0

∣
∣
∣
∣

∞

ν0+ε

)

= 0 .

Finally, the Kramers-Kronig relation for phase reconstruc-
tion of the form factor is

Θ(ν0) =
2ν0

π

∞∫

0

ln(ρ(ν)/ρ(ν0))
ν2
0 − ν2

dν. (8)

There is indeed no longer a singularity at ν = ν0, as can
be verified by a Taylor expansion of ln ρ(ν) about ν0. The

longitudinal bunch charge distribution follows from the in-
verse Fourier integral (3) as

S(z) =
2
c

∞∫

0

ρ(ν) cos
(

2πν

c
z + Θ(ν)

)

dν. (9)

The integration extends over all frequencies from zero to
infinity. Suitable extrapolations to small and large frequen-
cies are usually needed in practice. Real zeros of the form
factor do not contribute to the bunch shape.

TRANSVERSE SIZE EFFECTS

The form factor (2) can be evaluated explicitly for the
case of a longitudinal and transverse Gaussian charge dis-
tribution with rotational symmetry about the z axis,

S3d(x, y, z) =
1

2πσ2
t
e
− x2+y2

2σ2
t

1√
2πσz

e
− z2

2σ2
z

=⇒ F3d(kx, ky, kz) = e−
σ2

z k2
z

2 e−
σ2

t (k2
x +k2

y )

2 ,

where k2
x + k2

y = (2π sin α/λ)2 and kz = 2π cosα/λ for
an observation angle α with respect to the z axis. The form
factor is reduced to 1/e of its maximum value (obtained
for an infinitely thin line bunch) for a transverse size σ t =
λ/(
√

2π sin α).
The equation for F3d shows that the transverse contribu-

tion to the form factor is determined by σ t sin α, the lon-
gitudinal by σz cosα. For small angles, typical for radi-
ation from highly relativistic electrons, transverse effects
are therefore strongly suppressed. This effect can also be
seen from Fig. 1: the path length difference from electron
1 and electron i to the observation point P is given by
�n · �ri = xi sin α + zi cosα, showing again the weak in-
fluence of the transverse size for small angles.
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on understanding the basis of the reconstruction technique.
Thanks also to H. Delsim-Hashemi for the kind help on
some mathematical details.

REFERENCES

[1] J.S. Toll, Phys. Rev. Vol. 104, No. 6, 1760 (1956).

[2] R. Lai, A.J. Sievers, Nucl. Instr. Meth. A397, 221 (1997).

[3] F. Wooten, Optical properties of solids, Academic Press
(1972).
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