
MAGNETIC FIELD MULTIPOLE MEASUREMENT WITH HALL PROBE 

Abstract  
When assembling an insertion device, sorting 

algorithms are used to deduce the magnet configuration 
which reduces to a minimum the phase error and the field 
integrals before shimming. In order to carry out the 
sorting, magnets to be placed in the array are measured 
with a Helmholtz coil. This yields the magnetic dipolar 
moment, because Helmholtz coil measurements assume a 
dipolar field for each block. 

In order to take into account inhomogeneities, a 
hypothetical new sorting method could be used, based on 
the measurement of multipoles corresponding to each 
block. In this process, the first challenge is to find a 
method for the fast measurement of the multipoles 
generated by an arbitrary block. In this paper we face this 
challenge and propose a method that can be implemented 
using a Hall probe scanning along a set of straight lines.  

INTRODUCTION 
The development of narrow gap insertion devices 

yields a growing interest in the effect of magnetic 
inhomogeneities. Moreover, the FEL applications require 
fast techniques for characterizing the magnetic blocks and 
reduce the time needed to manufacture an insertion 
device. Magnetic inhomogeneities introduce multipolar 
terms that are added to those corresponding to the 
multipolar development of an ideal magnetic source. 
However, magnetic inhomogeneities are not measured 
with the Helmholtz coil, because it evaluates the magnetic 
field far from the magnet, and the multipolar terms decay 
faster than the dipolar with distance. Therefore, it is of 
great interest to develop a method for measuring the 
multipolar terms, feasible in terms of time consumption. 

Two main principles are used when characterizing a 
magnetic block by its magnetic field multipoles.  

First, outside magnetic sources, magnetic field B can be 
written as a gradient of a given potentialφ, this potential 
accepts a multipolar decomposition in spherical 
coordinates (r, � �:[1] 
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Where ( )ϕθ ,,mlY  is the well known spherical harmonic 

function. Hence magnetic field can be written as follows: 
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Where i goes from 1 to 3 and holds for the x, y, and z 

components. ml ,α stands for multipolar terms. In case of 

dipolar field, l=1 and (
1,1 −α ,

0,1α ,
1,1α ) is the dipolar 

moment vector. 
Second, according to Maxwell equations, all the 

information of the magnetic field in vacuum is contained 
in a 2D plane.  

The previous two statements can be combined in one: 
known the multipolar coefficients of the field in a 2D 
plane, one can deduce the field in all whole 3D space. 

With these ingredients, we use expression (2) to fit the 
magnetic field of a magnetic block measured in a planar 
grid. To this end, some simple mathematical treatment is 
needed. Implementing a change to Cartesian coordinates 
and the derivative in equation (2), we can write: 
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xp is the p-th Cartesian point where we measure the 
magnetic field, and Ui,l,m(xp) is a real function defined 
from equation (2) in the following way:  
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The conversion to Cartesian coordinates, in addition to 
facilitate the previous derivation, helps when obtaining 
the analytical expressions for the field integrals.  

To characterize a magnetic block, we will use a set of 
multipolar terms. This will allow us to know the field and 
the integral field in the space close to the block. 

To obtain the values of the set of multipolar terms, we 
will measure the magnetic field in some points in the 
space and then fit the measured field with the expression 
(3). In this process, the coefficients to be fitted are the 
multipolar terms 

ml ,α . 

Note that the expression to be fitted is linear, thus the 
fitting will be fast. The function to be minimized is: 
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Where ( )pi xβ  is the measured magnetic field i 

component at xp. In this way, for each block we obtain the 

set of multipole terms ml
block

,α that fully characterizes it. 
 

SIMULATING THE MEASUREMENT OF 
THE BLOCKS 

To study the feasibility of this method, we have used 
the blocks designed for the Apple II undulator HU71 to 
be installed at ALBA. Please note that in this paper we 
have carried out RADIA numerical simulations,[2] but 
the method can be easily implemented using Hall probe 
measurements. In the near future, real measurements will 
be carried out to cross-check its feasibility. 

The main parameters of the blocks (see Figure 1) 
geometry are listed below. The blocks have a rectangular 
geometry with two notches, with some inhomogeneities 
artificially added.  

 

Table 1: Block geometrical characteristics 

gap 15.50 mm 

period 71.36 mm 

High (z direction) 30.00 mm 

Length (y direction) 17.66 mm 

Width (x direction) 34.00 mm 

Notches high (z direction) 5.00 mm 

Notches Width (x direction) 5.00 mm 

 
The starting point to characterize a magnetic block is 

the measurement of the three components of the magnetic 
field in one plane, as shown in Figure 1. Closer to the 
blocks, major is the influence of high order multipoles, 
and thus more terms will be needed in expression (3).  

The plane of measurement is the undulator mid plane. 
To take advantage of the on the fly measurements with the 
Hall probe, the grid in which magnetic field will be 
measured is a set of straight lines parallel to the undulator 
axis. Figure 1 shows this arrangement. 

 

 

Parameters of the fitting 
By using l=10 in the expansion in equation (3), we 

found, according to calculations, that 9 lines of length 7 
periods (500 mm) of magnetic field measurement 
distributed above the magnet are enough to fit the field 
and its integrals����������	�
��
������������������������� ��
≥ gap/2 from the faces of the magnet and x ∈ [-10 mm, 10 
mm]), with errors around 1 G for the field and 1 G·cm for 
the field integral. The measured field for one block is 
typically ¼ of that existing in the final assembled 
undulator, i. e. βi ~ 0.2 T. In this case, the typical values 
of the αl,m ~103 for l=1, ~105 for l=2, etc. 

In a hypothetical real measure of a real block, several 
strategies could be applied to minimize both measure and 
calculation times. For example, several magnets can be 
placed one after the other, the measurement range of the 
Hall prove being several times bigger than the 
measurement space needed for of one block.  

From the calculation point of view, the fitting involves 
the calculation of one matrix related to the grid geometry, 
which has to be calculated only once for each insertion 
device (few tens of minutes with a Pentium IV 3GHz PC) 
and particular calculations for each magnet block. If 10 
terms are used in the multipolar expansion, the particular 
calculations are solved in less than a second per block. 

RESULTS 
We have implemented this algorithm in a C program 

running in a Pentium IV 3 GHz PC. We call the method 
described above Magnetic Multipolar Fitting (MMF for 
short) and we have compared it with the usual method. In 
which a Helmholtz Coil system or similar is used to 
measure the equivalent averaged magnetization. For this 
reason we call it Average Magnetization Measurement 
(AMM for short).  

In the case of AMM, for fast prediction of the block 
field in any point by means of well known analytical 
formulas, permeability equal 1 and the block shape are 
used. AMM gives a quite good description of the field far 
from the magnets surfaces in any direction, but not close 
to the blocks. 

In the MMF case, the field is well approximated by the 
fitted multipolar components from where the field is 
measured to far away from the block. In other words, the 
plane of measurement separates the region where the 
multipoles are well describing the field and the region 
where they are not. This is because, closer to the magnets, 
multipoles of higher order than that used in the fitting 
have more relevance.  

A comparison between AMM and MMF is presented in 
Figure 2. Here we define the error as the difference 
between the field or integral calculated with Radia from 
the exact geometry of the block, and the fields or integrals 
derived from the application of AMM or MMF to a set of 
values calculated in a grid of points (in the case of MMF) 
or from Helmoltz geometry set up (in the case of AMM).  

Independently of the capabilities of MMF and AMM in 
reproducing the magnetic field distribution, we have to 

x 

y (undulator axis) 

z 

Lines of magnetic field  
measurement 

Figure 1: Scheme of the magnetic field measurement. 

Block 

Note the notches in two of the corners of the blocks 
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take into account that in an undulator, as blocks have 
finite permeability, the neighborhood magnets will change 
the magnetic field of every single magnet. Then, when 
reproducing the field of the whole undulator one expects a 
periodic difference between the actual field and the 
simple superposition of fields produced by each magnet. 
The effect of this difference will mainly impact on field 
integrals (due to the end sections), but not in the phase 
error. However, the effect in the field integrals should be 
easily overcome by trim magnets shimming. 

 
In Figures 3 and 4 we present the error in the fitting of 

the magnetic field along the axis of the undulator for both 
MMF and AMM. In Figure 4, the black curve represents 
the difference of the fields generated by a single isolated 
block and the same block when it is in the undulator array. 
The green curve represents the error of the MMF fitting, 
which is very close to the black curve, indicating that this 
error does not depend on the magnet but is caused by the 
permeability effect. The red curve represents the error of 
the AMM, which is clearly bigger and, additionally, very 
dependent on the level of the magnet inhomogeneities. 

CONCLUSIONS 
We have shown the feasibility of the MMF method and 

we have compared it with the traditional method AMM. 
The next step would be the study of the influence of 
measurement errors in both methods. This study could be 
done via simulations, but only the application in a real 
case would test the real feasibility of MMF. 

Not only single blocks can be characterized in this way, 
also sets of blocks in modules. Sets of two vertically 
magnetized blocks with opposite magnetization direction 
(A magnets) with one horizontally magnetized block (B 
magnet) in between can then be characterized. In this way 

we take advantage of the theoretically null field integral 
of such a group of magnets, and the measurement will 
only describe the errors to be minimized in the sorting 
process. For such cases, the set of blocks is characterized 
with three sets l,m coefficients, each one using the centre 
of each block as origin to the multipolar decomposition. 
In an application to a sorting code, this would decrease at 
a half the number of elements to be permutated. 

A further step would be the implementation of the 
method into a sorting algorism. This is now under study.        

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Difference of the vertical component of the 
magnetic field along the longitudinal direction with 
respect to the field created by a block with neighbors. Red 
(AMM), green (MMF) and black (magnet without 
neighbors). 
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Figure 2: Transverse distribution of the field integral 
error (with respect to the field created by a block 
without neighbor magnets) for the AMM and MMF. 
Upper pictures show the error around the magnet and 
the lower in the zone of interest (mid gap). The electron 
trajectory corresponds to the line z=0 

 

Figure 3: Transverse distribution of the squared 
difference in the fitted magnetic field (with respect to 
the field created by the block without neighbors) for the 
AMM and MMF in the region of interest.  
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