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Abstract 
The dynamic aperture problem dates back to the design 

of the first synchrotrons.  Over time, both analytical and 
numerical methods have been pursued.  In the former case 
mainly by applying techniques developed for celestial 
mechanics to rather simplified equations of motion.  Over 
the last decade, analysis of the Poincaré map has become 
the method of choice.  In particular, application of 
symplectic integrators, truncated power series algebra, 
and Lie series techniques has led to a complete set of tools 
for self-consistent numerical simulations- and analytic 
treatment of realistic models.  Nevertheless, a control 
theory for the general nonlinear case remains elusive.  We 
summarize how to apply this framework to the design of 
modern synchrotron light sources.  Moreover, we also 
outline how a control theory can be formulated based on 
the Lie generators for the nonlinear terms. 

INTRODUCTION 
The modern approach [1-3] enables a straightforward 

pursuit of self-consistent analytical- and numerical studies 
of realistic models that includes the effects of engineering 
tolerances and radiation damping.  In particular, 
numerical integration of the equations of motion, 
extraction of the corresponding Taylor maps to arbitrary 
order, and a decomposition of the dynamics into a linear 
map and a Lie generator for the nonlinear part.  However, 
while: 

• the KAM theorem [4-6] justifies a perturbative 
approach, roughly, the KAM-tori survive for 
sufficiently smooth and small perturbations away 
from resonances, 

• and the Nekhoroshev theorem [7] shows that the 
confinement time grows exponentially with the 
inverse of the magnitude of the perturbation1 

they are of limited use for quantitative work.  In 
particular, for the design of a strongly nonlinear 
dynamical system; mainly because a rigorous treatment of 
stability requires very strict assumptions for the strength 
of the perturbation [8]. 

CHROMATIC CORRECTION 
Traditional design strategies to introduce sextupoles for (linear) chromatic correction are: 
I. Anti-symmetry: introduce pairs of sextupoles 

separated by modulo-π phase advance in the 
horizontal- and vertical planes. 

II. Higher order achromat: introduce a unit cell with a 
cell tune such that all the sextupolar modes are 
cancelled over N cells. 

                                                 
1 But does not exclude the possibility of chaotic motion. 

However, the first approach drives higher order 
chromaticity and the second both amplitude dependent 
tune shift and higher order chromaticity. 

More precisely, the Poincarè map has the (formal) Lie 
series representation [9] 

( ) ( ) ARAMM
khhkhk ee :43:1

linear
:: K++−==  

where 
( )( ) ( )( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( )[ ]

( ) ( )∑

∑

∑

+⎥⎦
⎤

⎢⎣
⎡=

==

+=

=

−+−++

−+−++

2,1

12
2

3
12

1

34

1

2/2/
3

*

2/2/
3

c.c.2,2
2
1

c.c.22

JJ

pJ

I
pJ

I

N

n

ynmlxnkjip
x

ml

yn

kj

xnnkjmlpjklmp

J

ymlxkjipml
y

kj
xjklmp

JhJhh

eLbhh

eJJhh

δδ

ηββ

δ

μμ

φφ

 
Clearly, the long term stability depends on h, R, and the 
initial conditions.  Moreover, h depends on the cell tune 
as well.  It is straightforward to show that h is zero for the 
geometric terms2 for case I, and that the sextupolar 
modes3 can be cancelled over N cells for case II. 

By generalizing the second approach, our strategy is: 
given a set of sextupole families (~10) for the supercell, 
minimize h for N cells over a range of cell tunes and 
determine the dynamic aperture by tracking.  To second 
order in the sextupole strengths, there are [10]:   

• 2+3+2 chromatic terms, 
• 5+8 geometric terms (modes), 
• 3+3 tune shift with amplitude and momentum 

i.e. a total of 26 terms.  In particular: 
1. For a given cell tune, calculate h and its parametric 

dependence (the gradient) on the sextupole 
strengths for yxJ ,  and δ  at the anticipated 
dynamic aperture. 

2. Minimize h  with e.g. the steepest descent 
method and evaluate the dynamic aperture. 

3. Change the cell tune by adjusting the quadrupoles 
in the matching sections and repeat steps 1-3. 

The algorithm can be automated. Also, the off-momentum 
aperture can be included by using a weighted average for 
the dynamic aperture.  

A robust solution is obtained by establishing a broad 
local optimum; for the bare lattice.  A typical result for a 
10×10 grid of cell tunes is shown in Figure 1.  Local 
optimization for a select set of cell tunes can then be 
pursued by e.g. fine tuning weights for the various terms 
in the generator and including even higher order terms.  A 
prerequisite for an effective approach is the 
implementation of an analytical/numerical computational 
                                                 
2 For thin sextupoles. 
3 Phase dependent terms. #bengtsson@bnl.gov 
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framework that has become known as the polymorphic 
tracking code [11,12]. 
 

 
Figure 1: Tune Scan of Normalized Dynamic Aperture for 
the Original TBA-24 Cell. 

APPLICATION TO TBA- AND DBA 
LATTICES 

In general, the dynamic aperture is a complex structure 
in phase space; known as a Cantor set [13].  So, while 
short term tracking may give a rough outline of the 
boundary between stable- and unstable motion, it provides 
little insight into the dynamics inside the presumably 
stable region.  At PAC05, we reported on preliminary 
work for a TBA-24 lattice [14].  While the prototype 
lattice had the desirable natural horizontal emittance, 
(linear) chromatic correction led to rather strong 
chromatic sextupoles. An in-depth attempt was therefore 
made to control the nonlinear dynamics with 9 sextupole 
families and by e.g. including amplitude dependent tune 
shifts4 to cubic terms in yxJ , ; leading to corrections with 
( )Lb3  up to ~8.6 m-2. 

 
Figure 2: Frequency Map5 for the Original TBA-24 Cell 
( m 5.5,m 0.3 == yx ββ ). 

                                                 
4 To 6th order in the sextupole strength. 
5 Amplitude dependent tune shift and diffusion map. 

However, shortly thereafter6 a frequency map [15] was 
generated; see Figure 2, which led us to conclude that the 
optics had to be relaxed [16].  In particular, by using the 
guideline: 

• a horizontal chromaticity per cell of ~3, 
• and a peak dispersion of ~0.3 m 

for a more realistic approach. 
The algorithm outlined above has been used to evaluate 

other candidate lattices as well.  In particular, a DBA-30 
option [17,18].  A comparison of the magnitude of the 
residual Lie generators is shown in Table 1 and the 
corresponding dynamic apertures in Figure 3.  The 10 
first- and 16 second order terms can be controlled with 
~10 free parameters largely because the latter appears due 
to cross terms of the former. 

Not surprisingly, the amplitude dependent tune shift is 
the main limiting factor for the original TBA-24 cell.   
Note also that the 20001h  term is excited systematically in 
the TBA structure since the horizontal cell tune is ~1.5.  
Similarly, 10002h  is intrinsic to the DBA structure because 
the horizontal tune of the supercell is ~1.0.  The former 
generates momentum dependence of the horizontal beta 
function and the latter second order horizontal dispersion.   
Combined with the strong sextupoles, this leads to 
significant second- and higher order chromaticity in the 
horizontal plane [10,18].  Presumably, 10002h  could be 
reduced/controlled if it was included in the linear optics 
optimizations.  Also, the magnitude of the residual Lie 
operators provide a guideline for acceptable magnitudes 
of other nonlinearietes, e.g. from insertion devices [19]. 

Due to the scaling of the generators mentioned earlier, 
there are basically only two groups of terms: sextupolar 
modes7- and tune shifts.  Since the former are phase 
dependent, they may be cancelled over the N cells in the 
achromat, whereas the latter grows systematically.   
Hence, a scale factor is introduced to take this into 
account.  It appears that, after it has been determining for 
some specific lattice, little is gained by adjusting it or 
introducing individual weights for the other terms; even 
when third- and higher order terms are included.  To 
summarize, the outlined algorithm is generic and 
apparently does not require the introduction of numerous 
heuristic parameters.  Regardless, the frequency map may 
be found useful as a diagnostic tool for further fine tuning. 

CONCLUSION 
We have developed an algorithm for dynamic aperture 

optimization of TBA- and DBA lattices.  In particular, for 
a given cell tune, the magnitude of the Lie generator for 
the nonlinear dynamics is minimized at the dynamic 
aperture, and the dynamic aperture evaluated by tracking.  
Moreover, the cell tune is optimized by repeating the 
process over a range of cell tunes.  The algorithm has 
                                                 
6 In collaboration with L. Nadolski at the SOLEIL project. 
7 Which contribute to the amplitude dependent tune shift as well, i.e. in 
the map normal form. 
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been automated by extending the analytical- and 
numerical framework originally prototyped at the CBP, 
LBNL.  The approach has essentially only one free 
parameter.  During the development, we have found the 
frequency map analysis to be a very useful diagnostic 
tool. 
 
Table 1: Normalized Lie Generators to Second Order in 
the Sextupole Strength. 

Lie 
Generator Effect Original 

TBA-24 
Relaxed 
TBA-24 DBA-30 

11001h  
δ

ν
∂

∂ x  5.5e-9 1.4e-8 1.6e-11 

00111h  
δ

ν
∂

∂ y  6.2e-10 3.0e-9 1.3e-12 

10002h  
δ

η
∂

∂ x  8.3e-8 6.1e-8 3.3e-6 

20001h  sx νν ±  1.5e-5 3.4e-6 6.0e-7 

00201h  sy νν ±  4.6e-7 1.2e-7 3.5e-8 

21000h  xν  4.9e-6 2.0e-6 6.4e-7 

10110h  xν  1.1e-6 2.4e-7 1.5e-7 

30000h  xν3  3.2e-6 1.3e-6 2.1e-8 

10020h  yx νν 2−  1.2e-6 6.6e-7 5.4e-8 

10200h  yx νν 2+  3.9e-6 1.0e-6 7.1e-7 

20110h  xν2  6.6e-6 5.3e-7 2.2e-8 

31000h  xν2  3.6e-5 1.8e-6 8.8e-8 

40000h  xν4  3.4e-7 1.6e-7 7.4e-9 

20020h  yx νν 22 −  6.7e-6 1.5e-8 3.4e-7 

20200h  yx νν 22 +  2.9e-8 3.3e-7 1.3e-9 

11200h  yν2  1.2e-6 3.3e-8 5.5e-8 

00310h  yν2  9.4e-9 7.9e-8 1.5e-7 

00400h  yν4  1.4e-8 1.3e-7 2.3e-8 

22000h  
x

x
J∂

∂ν  3.5e-5 1.9e-6 1.1e-6 

11110h  

xy

yx
J ,

,
∂

∂ν  1/1e-5 9.1e-7 1.3e-7 

00220h  

y

y
J∂

∂ν  2.7e-6 5.6e-7 6.9e-7 

22001h  
δ

ν
∂∂

∂
x

x
J

2
 5.4e-6 1.2e-6 7.0e-7 
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δ

ν
∂∂

∂
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,
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 3.3e-6 8.0e-7 3.7e-7 

00221h  
δ

ν
∂∂

∂
y

y
J

2
 6.3e-7 3.0e-7 7.6e-8 

11002h  
2

2

δ
ν

∂
∂ x  1.1e-6 1.7e-6 3.9e-6 

00112h  
2

2

δ
ν

∂
∂ y  1.8e-7 5.2e-8 1.1e-7 

 

 
Figure 3: Dynamic Aperture (normalized with yx ββ ) 
for the Original TBA-24, TBA-24, and DBA-30 Options. 
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