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Abstract

To suppress the emission of secondary electrons in accel-
erators with positively charged beams (ions or positrons) it
has been proposed to use a vacuum chamber that is lon-
gitudinally grooved (or, equivalently, one can say finned).
One consequence of having such a chamber in an acceler-
ator is an increased resistive wall impedance. In this pa-
per, we calculate the resistive wall impedance of one such
finned chamber, planned to be used in experimental studies
of secondary emission suppression at SLAC. For rectangu-
lar fins, we use an analytical method based on a conformal
mapping approach; we compare the results with a numer-
ical solution of the field equation. We also numerically
compute the impedance for rounded fins (as will be used
in the SLAC experiment) and analyze how the impedance
depends on geometric properties of the fins.

INTRODUCTION

In high-current storage rings with positively charged
beams, such as the positron damping ring of the Interna-
tional Linear Collider (ILC) project, the electron cloud ef-
fect can seriously limit performance. One mitigating mea-
sure that has been proposed is to replace the flat surface
of the vacuum chamber with one containing longitudinal
grooves. Such grooves reduce the secondary emission of
electrons which, in turn, suppresses the electron cloud ef-
fect [1–3]. A grooved vacuum chamber, however, will have
an increased resistive wall impedance, which will tend to
reduce the threshold to other instabilities, such as the multi-
bunch (transverse) beam instability. In this report we cal-
culate the increase in resistive wall impedance due to the
grooves.

More specifically, in this report we consider a grooved
(or it can be described as finned) vacuum chamber of pe-
riod p and fin thickness t (see sketch on Fig. 1a). For
the grooved chamber proposed for a SLAC experiment [4]:
p = 2.82 mm, t = 0.56 mm, fin depth d = 4.57 mm, and
beam pipe radius a = 55.1 mm; the fin tips are rounded
and have a semi-circular profile.

The resistive wall wake will be increased by a scale fac-
tor when compared to that of a flat pipe surface. In this
report we first find this factor for the case of rectangular
fins using an analytical approach that employs Schwartz-
Christoffel transformations. Note that a similar approach
has been applied to finding fields of periodic structures e.g.
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Figure 1: a)—detail of the grooved vacuum chamber wall;
dimensions shown are period p and fin thickness t; b)—
geometry for the problem that is actually solved (for the
case of rounded fin tips). The z axis points out of the page.

in [5]. Our result is then compared with that of a numerical
calculation. Finally, the numerical method is applied to the
round-tipped fin structure.

METHOD

The energy loss induced by the electromagnetic field in-
side the wall in the small skin depth approximation (a so
called Leontovich boundary condition [6]) is proportional
to the square of the magnetic field on the metal surface.
Therefore, the enhancement η of the resistive wall wake ef-
fect (both transverse and longitudinal) for the finned beam
pipe, compared to a normal beam pipe, can be written as

η =
∫
H2 ds

H2
0p

, (1)

where H is magnetic field on the surface of the metal, H0

the magnetic field in the case of a flat (non-grooved) sur-
face, and integration follows the grooved surface over one
period in a plane of constant z (the z axis points out of the
page in Fig. 1). The magnetic field can be represented as
H = ẑ × ∇ψ, with ẑ the unit vector in z and the mag-
netic potential ψ satisfying the two-dimensional Laplace
equation ∇2ψ = 0. Note that using the Laplace equa-
tion for the magnetic field is valid for frequencies ω such
that c/ω � p; for our parameters p ∼ 3 mm this means
ω � 2π · 1011 Hz.

Neglecting the curvature due to the pipe radius a (which
is valid if a is much larger then the fin depth d) and using
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the symmetry of the problem, we actually solve the Laplace
equation for the geometry shown in Fig 1b, which covers
half of the period p/2 and extends beyond the tip of the
fins (toward the center of the pipe) by some distance b. The
exact value of b is not important as long as b � p. The
boundary condition for the magnetic field H is that it is tan-
gential on the surface of the metal, as well as at the bottom
horizontal line (where H ≡ H0), and it is perpendicular to
the vertical lateral boundaries. In terms of the potential ψ
this means that ψ = 0 on the metal surface, ψ = const at
the bottom and ∂ψ/∂n = 0 at the vertical boundaries.

ANALYTICAL APPROACH

a) b)

Figure 2: Magnetic field lines in the vicinity of a fin with
rectangular (a) and rounded (b) fin tips.

We first calculate the enhancement factor η for the case
of rectangular fins. In this case the solution ψ(x, y) can
be obtained with the help of conformal mapping using the
Schwartz-Christoffel integral [7]. We introduce the com-
plex variables w = ψ + iφ and u = −y − ix, with ψ
being the magnetic potential, φ an auxiliary function and x
and y the rectangular coordinates. The signs in the relation
u = −y − ix correspond to the coordinate system shown
in Fig. 1b, with the origin located in the upper right corner.
Omitting the derivation, we present here the final result of
the conformal map u(w):

u = 2

√
ζ −A

(A−B)(A − ζ)

[

(B −A)F
(

μ,
B(A− 1)
(A−B)

)

+(1−B)Π
(
A− 1
A−B

,μ,
B(A− 1)
(A−B)

)]

, (2)

with

μ = sin−1

(√
(A−B)(1 − ζ)
(A− 1)(B − ζ)

)

, (3)

and

ζ =
1
4
e−w (1 + ew)2 . (4)

Here F (μ, τ) is the elliptic integral of the first kind,
Π(ξ, μ, τ) is the incomplete elliptic integral, and A and B

are numbers related to the geometric parameters p, t and
d. The real part of the inverse function u−1(w) gives the
potential ψ as a function of coordinates x and y. We find
that for the values of p, t and d given above, A = 0.36 and
B is very close to unity, 1−B = 5 · 10−6. The calculation
of the enhancement factor gives η = 1.7.

The magnetic field lines in the vicinity of a fin calculated
with the map Eqs. (2)-(4) are shown in Fig. 2a. In Fig. 3 we
plot H2 as function of distance along the metallic surface
s (the red curve). The point s = 0 is at the center of the
bottom surface of the fin (the center of the tip), s = s c =
0.28 mm is the corner where the bottom (horizontal) and
vertical fin surfaces meet. We note that, at the corner, there
is the expected singularityH 2 ∼ |s−sc|−2/3 (see e.g. [8]).
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Figure 3: NormalizedH 2 as function of distance along the
metallic surface s, for the the vacuum chamber with flat
fin tips (red color) and for rounded fin tips (black curve).
The point s = 0 is at the bottom of the fin (the tip) in the
midplane.

NUMERICAL SOLUTION

Laplace’s equation for the grooved vacuum chamber was
also solved using Matlab’s Partial Differential Equation
toolbox. This is a 2D finite element, partial differential
equation solver. For the calculation we took b = 10 mm,
and used ∼ 3 · 105 mesh points.

We first performed the calculation for the case of rectan-
gular fins. The numerically obtained H 2 on the surface of
the fins is in good agreement with the analytical solution of
above; in fact, when plotted over the range of Fig. 3, the
two solutions are nearly indistinguishable. The finite ele-
ment program, however, cannot produce the proper singu-
lar behavior, and the discrepancy becomes apparent when
one zooms in very close to the corner. Consequently, the
numerically obtained η = 1.46 does not agree with the an-
alytical value of 1.7, and is 15% less, than the analytical
solution.

The numerical calculation was repeated for the case of
rounded fins. Magnetic field lines in the vicinity of a
rounded fin are shown in Fig. 2b. The normalized H 2 on
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the fin surface is given in Fig. 3 (the black curve). Here the
maximum field is at the very tip of the fins and there is no
singularity. Note that, when moving upward along the tip
surface (into the groove), the round and rectangular fin so-
lutions asymptotically converge. The enhancement factor
for rounded fins η = 1.47, 14% less than for rectangular
fins.

We have earlier noted that a does not influence our re-
sult; for d � p, d also does not influence the result. In
this case we are left with only one free parameter, (t/p).
In Fig. 4 we plot the numerically obtained η (for rounded
fins) as function of t/p. The central point on this plot cor-
responds to the numerical values of p and t used above. We
see that η slowly increases as t/p is reduced.
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Figure 4: For the vacuum chamber with rounded fin tips:
the enhancement factor η as function of t/p (the plotting
symbols).

CONCLUSION

We have studied the effect on the strength of the resistive
wall impedance of using a round beam pipe with longitu-
dinal grooves (or one can say fins), something that is being
considered to mitigate the electron cloud effect in storage
rings. For the case of flat-tipped fins we have found an an-
alytical solution of magnetic field enhancement using con-
formal mapping techniques. The calculation was repeated
using a numerical partial differential equation solver. Com-
parison of the surface magnetic field for the two solutions
found excellent agreement (except very close to a singu-
larity, where the numerical method fails). The numerical
approach was repeated for rounded fin tips, for various val-
ues of fin thickness over groove period. For the specific
grooved chamber proposed for a SLAC experiment, we find
the impedance enhancement factor∼ 1.5.
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