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Abstract

For a short bunch in an elliptical collimator we demon-
strate that, as in a purely round collimator, the wake can be
estimated from the primary fields of the beam alone. We
obtain the wakes in the LCLS rectangular-to-round, undu-
lator transitions using a hybrid method that includes indi-
rect numerical (field) integration and an analytical potential
energy term. For the LCLS 1 nC bunch charge configura-
tion, we find the wake-induced energy change in the tran-
sitions to be small compared to that due to the resistance of
the beam pipe walls.

INTRODUCTION

In the Linac Coherent Light Source (LCLS) with the
nominal, 1 nC of charge configuration the longitudinal
wakefields in the undulator region are significant and will
affect the laser performance. The dominant contribution to
the wakefields is the resistive wall wake (with the ac con-
ductivity included) of the undulator beam pipe [1]. To ame-
liorate the wake effects it has been proposed to change the
pipe inner surface material from copper to aluminum and
to change the cross-section from a round to an approxi-
mately rectangular shape (while leaving the vertical aper-
ture fixed). Within the undulator, however, the beam pipe
will need to be interrupted 33 times by pipes with round
cross-sections that house the beam position monitors. Thus
there will be 33 pairs of rectangular-to-round transitions. In
this note we calculate the (geometric) wakefields generated
in these transitions.

To solve this problem by direct (numerical) integration
of the fields as the beam moves through the structure is
difficult for the short LCLS bunch: to allow the wake to
“catch-up” to the beam, integration through a long exit
beam pipe is required, a procedure that tends to accumu-
late numerical errors. An indirect integration algorithm
for non-cylindrically symmetric (3D) structures is required.
For 3D cavity-like structures with beam pipes, an indi-
rect procedure was derived by T. Weiland and R. Wanzen-
berg [2]. For cylindrically symmetric (2D), collimator-
like structures, an indirect procedure was developed by
O. Napoly, et al; according to this method, after the beam
passes the structure, the long on-axis integration of fields
is replaced by a radial integration to the walls [3]. In this
report we make use of a calculation approach that is appli-
cable to the (3D) LCLS rectangular-to-round transitions.

In an LCLS transition a 10 mm by 5 mm (horizontal x
by vertical y) rectangular pipe joins a 4 mm radius round
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pipe (see Fig. 1). The length of a rectangular section is
∼ 3 m, of a round section≥ 470 mm. Because of the large
distance between transitions, a pair of transitions has the
same wakefield no matter which transition comes first. In
this report numerical calculations are done with ECHO, a
finite-difference, time-domain computer program that can
accurately obtain wakefields of short bunches in long struc-
tures (it generates minimal errors due to “mesh dispersion”
and mesh-to-boundary mismatch) [4]; the meshing is car-
ried out in Microwave Studio [5]. Note that in the LCLS
undulator region the rms bunch length σz = 20 μm.
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Figure 1: A pair of LCLS rectangular-to-round transitions.

2D MODEL
Analytical Wake

Let us first estimate the wake potential using a 2D (cylin-
drically symmetric) model. Consider transitions from a
round pipe of radius a = 2.5 mm to one of radius b = 4 mm
and back again, where the distance between transitions is
large. Since the aperture of this 2D model is everywhere
less than or equal to that of the real (3D) transition, we ex-
pect this estimate of the wake to be pessimistic.

For short bunches (σz � a) the diffraction model of
Heifets and Kheifets (H&K) applies [6]: the (high fre-
quency) impedance is constant

Zhi =
Z0

π
ln(b/a) , (1)

with Z0 = 377 Ω, and the wake is resistive (the wake shape
is the same as the bunch distribution)

W (s) = −Zhicλz(s) , (2)

with s position within the bunch, c the speed of light, and
λz the bunch distribution (positive W means energy gain).
For a Gaussian bunch the loss factor (minus the average
wake) is kloss = Zhic/(2

√
πσz). For our parameters:

Zhi = 56.4 Ω, kloss = 238 V/pC and the wake rms
Wrms = 94 V/pC (in this report we take a σz = 20 μm
Gaussian bunch unless otherwise indicated).

H&K explained that the short-bunch wake of an in-
transition (from big pipe to small) can be written as W in =
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W r −W e [with W r, W e, radiation and (static) potential
energy parts], and of an out-transition (from small pipe to
big) W out = W r + W e, and that W r ≈ W e. Thus, for
e.g. an in-transition, the two parts cancel to give nearly zero
wake (one can think of the fields beyond a as being cleanly
clipped away, with the beam never aware of the change in
boundary). Thus, for a transition pair W = 2W r ≈ 2W e.

Numerical Calculations

Numerically obtaining the wake for this problem by di-
rect integration of the electric fields as the bunch passes the
transitions is difficult, since it takes a long time for the scat-
tered fields to catch up to the bunch. [The catch-up distance
zcu � 2(b−a)2/�, with � a fraction of σz .] A modification
of the Napoly indirect method is employed by the computer
program ECHO for 2D calculations [7]. An ECHO calcu-
lation was performed for a transition pair of the 2D model;
for the calculation the pair was modelled as a collimator
of length g = 20 mm; we find that the numerical result
agrees well with the analytical approximation (see Fig. 2).
Note that numerically we find that the catch-up distance
zcu ≈ 2.3 m (or � ≈ σz/10).

numerical

Figure 2: Wake for 2D model of LCLS transition pair
(solid), compared with the analytical result, Eq. 2 (dashes).
Also given are results for tapered transitions (see below).

Effect of Tapering Diffraction radiation is projected
at shallow angles, and one expects tapering to have lit-
tle effect until taper angle θ ∼ σz/a, which here implies
θ ∼ 0.5◦. We performed calculations for symmetric 2D
transition pairs with taper angles (see Fig. 3). Wakes, for
θ = 1◦, 4◦, are given in Fig. 2; kloss and Wrms, for several
angles, are given in Table 1 (the earlier results are labeled
θ = 90◦). From Table 1 we see that e.g. Wrms does not
significantly decrease until θ � 1◦, in reasonable agree-
ment with our estimate.
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Figure 3: A tapered, cylindrically symmetric collimator.

Table 1: Wake properties for the round collimator of Fig. 3.

θ [deg] kloss [V/pC] Wrms [V/pC]
90. 238. 94.

(analytical)
90. 235. 93.

8.5 191. 96.
4. 148. 101.
2. 88. 91.
1. 50. 65.
0.5 33. 41.

3D TRANSITIONS

Collimator in Round Beam Pipe

The indirect method has been extended in ECHO to 3D
structures that end in a round beam pipe [8]. For short
bunches ECHO employs a moving mesh that encloses the
beam longitudinally and reaches transversely to the struc-
ture walls. The first part of the calculation is direct inte-
gration of the wake forces as the beam passes through the
beginning of the structure. When the moving mesh finally
is entirely within the round exit pipe region the monopole
moment of the transverse field (over the mesh) is extracted;
this field is then integrated radially to the wall, following
the procedure of the 2D indirect method.

As a concrete example consider an elliptical collimator
in a round beam pipe (see Fig. 4), and a Gaussian bunch
with σz = 25 μm. The wake as obtained by the just-
described indirect method is shown in Fig. 5 (the solid
curve). The loss factor kloss = 116.6 V/pC. To obtain
an analytical result, we calculate the potential difference in
the primary beam field when it is in the elliptical vs. in
the round pipe, giving us W e (more details of such a cal-
culation are given in the next section); then, as in the 2D
case, we let W = 2W e. The result is shown by dashes
in Fig. 5; we see good agreement with the numerical re-
sult (kloss = 118.5 V/pC). This agreement suggests that
this analytical method can be used to find the short-bunch
wakes of a large class of 3D collimators (specifically, those
that are abrupt-edged and translationally symmetric).
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Figure 4: Geometry of 3D collimator in a round beam pipe.

Before leaving this section, recall that in the 2D (round)
collimator case W e could be found either by the change
in potential in the primary field in the two pipes, or by the
potential in the field “clipped” away by the collimator: the
two calculations gave the same answer. For the 3D collima-
tor this is no longer true, because the steady-state field pat-
tern within the (elliptical) collimator aperture differs from
that in the (round) beam pipe. Thus, we find here, accord-
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Figure 5: Wake of the elliptical collimator, comparing the
numerical (solid line) and analytical results (dashes).

ing to a clipping calculation, kloss = 110.3 V/pC; this re-
sult is different from before, but it agrees well with a direct
numerical calculation for a short (3 mm-long) elliptical col-
limator, where kloss = 109.9 V/pC. The implication is that,
when a beam encounters a collimator it takes time for its
fields to adjust themselves to a new steady-state configura-
tion. Thus, for a short collimator, a clipping calculation is
appropriate; for a long collimator the change in potential in
the two pipes gives the correct answer.

LCLS Rectangular-to-Round Transitions

Consider now the pair of LCLS rectangular-to-round
transitions of Fig. 1. Both the rectangular and the round
regions are long and we can consider them independently.
First note that the analytical methods used above for the
elliptical collimator—obtaining the wake from the primary
field potential alone—cannot be used here, since neither
cross-section is inscribed entirely within the other. Also
note that the indirect numerical method, described above,
can only be applied to the rectangular-to-round half of the
pair since it ends in a round pipe. For a transition pair

W = W in + W out = 2(W out −W e) , (3)

where W out represents the numerically-obtained,
rectangular-to-round wake and W e the potential difference
in primary beam fields in the two pipe cross-sections.

To obtain W e we first use a Matlab Poisson equation
solver to find the field energy for the 2D problem of a beam
in the rectangular geometry (see Fig. 6). In the round case
the normalized energy beyond radius ε is w = u/Q2 =
Z0c ln(b/ε)/2π, with u the energy in the (2D) fields, Q
the bunch charge. For each geometry the total field energy
diverges at the origin, but the difference between the two
totals does not (near the origin the fields are the same). We
find (wround − wrect) = 0.2407 Z0c/2π. Finally, W e =
λz(wround − wrect).

To test the indirect method on the LCLS rectangular-to-
round transitions we first perform calculations for a longer
bunch (σz = 200 μm). The calculations are done twice:
first, using direct integration on a pair of transitions sepa-
rated by L = 50 mm, and then using the indirect method.
We find good agreement in the results.

For the nominal 20 μm long bunch it is difficult to obtain
an accurate wake using the direct method. Thus, for this

Figure 6: Field energy density in the rectangular beam pipe.

case we perform the indirect calculation only. The results
are shown in Fig. 7. We obtain kloss = 153 V/pC and
Wrms = 61 V/pC. Using Zhi = 2

√
πσzkloss/c, we find

that Zhi = 36.2 Ω. The 3D results are ∼ 2/3 the 2D
estimates (see Table 1 with θ = 90◦).
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Figure 7: Wake of a pair of LCLS 3D transitions.

The LCLS bunch shape is not Gaussian, and can be de-
scribed as a 3 kA flat-top with leading and trailing spikes or
horns, with an rms length σz = 20 μm. The total wake is
given by Eq. 2, with Zhi = 1.2 kΩ (the effect of all 33 pairs
of rectangular-to-round transitions). It is the variation in in-
duced energy change that is important for the LCLS, since
an average change can always be compensated by tapering
the undulator strength. Over the core of the beam (that part
that excludes the horns) the total variation in induced en-
ergy is ΔE/E ∼ 0.03% (Q = 1 nC, energy E = 14 GeV);
in the horn regions it grows to ΔE/E ∼ 0.10%, 0.15%.
These numbers, however, are still small compared to the
effect of the resistive wall wake of the beam pipe (for the
flat, aluminum chamber ΔE/E = 0.6%) [1].
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