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Abstract

The beam coupling impedances of small discontinuities
of an accelerator vacuum chamber have been calculated
(e.g., [1]) for ultrarelativistic beams using Bethe’s diffrac-
tion theory. Here we extend the results for an arbitrary
beam velocity. The vacuum chamber is assumed to have
an arbitrary, but fixed, cross section. The impedance de-
pendence on the beam velocity exhibits some unusual fea-
tures. For example, the reactive impedance, which dom-
inates in the ultrarelativistic limit, can vanish at a certain
beam velocity, or its magnitude can exceed the ultrarela-
tivistic value many times.

INTRODUCTION

A general analytical approach for calculating the beam
coupling impedances of small discontinuities on the walls
of an accelerator vacuum chamber has been developed in
[2, 1] for ultrarelativistic beams. The method is based on
the Bethe theory of diffraction by small holes [3], accord-
ing to which the fields diffracted by a hole can be found as
those radiated by effective electric and magnetic dipoles.
The Bethe idea of effective dipoles, applicable for wave-
lengths large compared to the typical hole size h, was
first used to calculate the coupling impedances of pump-
ing holes in a circular waveguide for ultrarelativistic beams
[4, 5]. We extend the analytical approach [2, 1] to non-
ultrarelativistic beams. The earlier results related to the
subject [6, 7] were restricted to an axisymmetric vacuum
chamber. Our study treats a more general case of an arbi-
trary simply-connected chamber cross section.

FIELDS

Let us consider an infinite cylindrical pipe with an arbi-
trary cross section S and perfectly conducting walls. The
z axis is directed along the pipe axis, a small discontinu-
ity (e.g., a hole) is located in the cross section z = 0 at
the point (�b, 0), and a typical hole size h satisfies h � b.
The discontinuity is considered small when its size is much
smaller than the wavelength of interest. To evaluate the
coupling impedance one has to calculate the fields induced
in the chamber by a given current. Consider a charge q
that moves on or parallel to the chamber axis with ve-
locity v = βc and has a ”pancake” charge distribution
ρ(�r, z; t) = qf(�r )δ(z − βct), where f(�r ) is a normalized
transverse charge density,

∫
S d�rf(�r ) = 1.

We will use eigenvalues k2
g and orthonormalized eigen-

functions (EFs) eg(�r) of the Dirichlet boundary problem in
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S:
(
∇2 + k2

g

)
eg = 0; eg

∣
∣
∂S

= 0, where g = {n, m} is

a generalized 2D index. The fields harmonics �E, �H pro-
duced by at the location (�b, z) on the chamber wall without
hole can be expressed in terms of EFs as

Eν(�b, z; ω) = Z0Hτ (�b, z; ω)/β (1)

= −Z0q

β
exp

(

i
ωz

βc

) ∑

g

fg∇νeg(�b )
k2

g + κ2
,

where κ ≡ ω/(βγc). Here Z0 =
√

μ0/ε0 = 120π Ω,
ν̂ is an outward normal unit vector and τ̂ is a unit vector
tangent to the boundary ∂S of the chamber cross section S,
�∇ is the 2D gradient in plane S,∇ν ≡ �∇ · ν̂, and {ν̂, τ̂ , ẑ}
form a right-handed basis. In Eq. (1) fg are the coefficients
of EF expansion f(�r ) =

∑
g fgeg(�r ); they are given by

fg =
∫

S d�r f(�r )eg(�r ). For the case of a point charge with
the transverse offset �s from the axis, we have fg = eg(�s ).

Next we have to calculate the fields scattered into the
vacuum chamber by the discontinuity. According to the
Bethe theory, the fields radiated by a small discontinuity
(hole) into the pipe are equal to those produced by effective
electric and magnetic dipoles [3] Pν = αeε0E

h
ν ; Mτ =

αmHh
τ , where αe, αm are the hole polarizabilities, and ’h’

means that the beam fields (1) are taken at the hole location
(�b, 0). For a circular hole of radius h in a thin wall αm =
4h3/3 and αe = −2h3/3 [3]; for other shapes see [8].

The static values of αe, αm can only be used when the
beam fields (1) do not change significantly from one point
of the discontinuity to another, i.e. when ωh/(βc) � 1,
which gives the applicability condition for our results. For
most small discontinuities, it is satisfied at frequencies of
interest. The frequency range can be extended even further
if we include frequency corrections to the static polarizabil-
ities, e.g. see [9] for elliptic holes.

After the effective dipoles are found, we calculate the
scattered fields as a sum of waveguide eigenmodes excited
in the chamber by the dipoles. This approach has been car-
ried out for ultrarelativistic beams in a circular pipe [4], and
in an arbitrary chamber [2]. It works in exactly the same
way for non-ultrarelativistic beams, see [10] for details.

BEAM COUPLING IMPEDANCES

The longitudinal impedance is defined as

Z(ω) = −1
q

∫ ∞

−∞
dz e−i ωz

βc

∫

S

d�r t(�r )Ez(�r, z; ω) , (2)

where t(�r ) is the test-charge transverse distribution nor-
malized by

∫
S d�r t(�r ) = 1. We include into Ez only the

discontinuity contribution. Performing integration leads to

Z(ω) = −iZ0 ω/c eν(f ; κ)eν(t; κ) (αm + αe/β2) , (3)
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where we introduced the following notation

eν(f ; κ) ≡ −
∑

gfg∇νeh
g/

(
k2

g + κ2
)

. (4)

The normalized transverse field (4) is related to the trans-
verse harmonics of the beam field at the hole location (1):

eν(f ; κ) = βEν(�b, 0; ω)/(Z0q) = Hτ (�b, 0; ω)/q . (5)

Since the lowest eigenvalue kg is of the order of 1/b, for
ωb/(βγc) = κb � 1 Eq. (4) becomes frequency- and
velocity-independent. The condition ωb/(βγc) � 1 in-
cludes two cases: (i) ultrarelativistic limit, γ →∞; and (ii)
long-wavelength (or low-frequency) limit, when the wave-
length λ = 2π/k = 2πβc/ω is large compared to the typ-
ical cross-section size b. Equation (4) with κ → 0 gives a
solution for a 2D electrostatic field created on the chamber
wall in the cross section S by a uniform in z charge, equal
to ε0 per unit length of z, that has the transverse distribu-
tion f(�r ). From the Gauss law, it satisfies the normaliza-
tion condition

∮
∂S

dl eν(f ; 0) = 1, where integration goes
along the cross-section boundary ∂S. For a simple par-
ticular case of a circular cross section with radius b, and
an axisymmetric charge distribution f(�r ) = f(r) — it in-
cludes an on-axis point charge, — the solution, due to the
problem symmetry, is eν(f ; 0) = 1/(2πb), cf. [4, 2].

The usual monopole longitudinal impedance is obtained
from Eq. (3) with the point charges on axis, i.e. when f g =
tg = eg(0), so that

Z(ω) = −iZ0 (ω/c) e2
ν(0; κ) (αm + αe/β2) . (6)

In the ultrarelativistic limit, β → 1, γ → ∞, Eq. (6) coin-
cides with the known result for a small discontinuity [2, 1].

For simple cross sections S, one can obtain explicit ex-
pressions of the normalized field (4) and the longitudinal
impedance (6), see [10]. For a circular cross section of ra-
dius b, Eq. (6) takes form

Z(ω) = −iZ0
ω

c

αm + β−2αe

4π2b2
[I0(κb)]−2

, (7)

which coincides, up to notations, with the result in [7].
Here I0(x) is the modified Bessel function of the first kind.

For a rectangular cross section a × b, assuming that the
hole is located on the side wall at x = a, y = yh, the
longitudinal impedance (6) is

Z(ω) = −iZ0 ω/c (αm + β−2αe)/b2 ×

×
[
∑∞

p=0

(−1)p sin[π(2p + 1)yh/b]
cosh(πu2p+1/2)

]2

, (8)

where um = a
√

m2/b2 + κ2/π2. In the ultrarelativistic
limit, Eq. (8) coincides with the result in [1].

For an axisymmetric small obstacle on the wall of a cir-
cular beam pipe — like a small enlargement (cavity) or an
iris — the longitudinal impedance is similar to Eq. (7):

Z(ω) = −iZ0
ω

c

α̃m + β−2α̃e

2πb
[I0(κb)]−2

, (9)

where the effective polarizabilities α̃m and α̃m are now de-
fined per unit length of the circumference 2πb of the cham-
ber cross section (circle) S. In the ultrarelativistic limit
Eq. (9) coincides with the previous results [11, 12]. For a
small axisymmetric enlargement with area A of the longi-
tudinal cross section, α̃m = A, while for an axisymmetric
protrusion (iris) of the same cross-section area α̃m = −A.
The electric polarizability α̃e can be found by solving a 2D
electrostatic problem, see [11, 12]. It is positive for protru-
sions and negative for enlargements, so that in both cases
α̃m and α̃e have opposite signs.

The longitudinal impedance depend on the beam veloc-
ity in two ways: via eν(�s ; κ) and in the combination of
polarizabilities (αm +αe/β2). The first dependence enters
via the parameter κb = ωb/(βγc), cf. Eqs. (4), (7)-(9). For
κb � 1 the factor e2

ν(�s ; κ) is close to its ultrarelativistic
limit, while at κb > 1 it decreases exponentially to zero.
We should emphasize that for β < 1 the monopole lon-
gitudinal impedance depends on the beam position in the
chamber cross section, unlike its ultrarelativistic counter-
part. For a circular cross section this dependence takes a
particularly simple form as an additional factor of I 2

0 (κt)
in (7) and (9), where t is the beam transverse displacement
from the chamber axis.

In the combination αm + αe/β2 the electric contribu-
tion is enhanced as the beam velocity decreases. This sum
(more exactly, this difference, because αm and αe always
have opposite signs) can either vanish for some values of
β, or become much larger than its ultrarelativistic limit
αm + αe. It vanishes when 0 < β =

√
−αe/αm < 1.

This situation occurs only for discontinuities like holes
or chamber enlargements (small cavities), since for them
αm > |αe| [2]. For a circular hole

√
−αe/αm = 1/

√
2.

The impedance (6) of the hole, which is inductive for rela-
tivistic beams, changes its sign for β < 1/

√
2 becoming a

“negative inductance”. On the other hand, for protrusions
and irises the impedance remains inductive for any beam
velocity because of αe > |αm|, cf. [12, 11]. For example,
a semi-spherical protrusion (bump) of radius a on the wall
has polarizabilities αe = 2πa3 and αm = −πa3 [12].

For all small discontinuities the impedance vanishes at
very slow beam velocities, when β → 0, since the fast
decrease of the factor e2

ν(�s ; κ) suppresses the growth due
to αe/β2. This behavior is illustrated in Fig. 1 for a hole
and in Fig. 2 for a protrusion, both in a circular cylindri-
cal chamber with the radius b of its cross section. For
other cross sections the impedance behavior is similar: the
impedance magnitude can exceed the ultrarelativistic value
many times. In fact, the ratio Z(β)/Z(1) for ωb/c = 0.1
in Fig. 1 reaches -83.3 at β = 0.062, and in Fig. 2 its maxi-
mum is 167.5, well outside the shown range. The extremes
become even larger for lower frequencies. It is worthwhile
to note that the results in Figs. 1-2 are independent of the
discontinuity size h provided that h � b and, of course,
the applicability condition is satisfied, i.e. ωh � βc.

For long elliptic slots parallel to the chamber axis, when
the ellipse semi-axes w, l satisfy w � l � b, the leading
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Figure 1: Ratio of impedance (7) to its relativistic value for
a circular hole versus β for ωb/c = 0.1, 0.25, 0.5, 1 (solid,
short-dashed, dashed, and long-dashed curves).
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Figure 2: The same, for a small semi-spherical protrusion.

terms (∝ w2l) of the static polarizabilities αm and αe for
a thin wall cancel each other [4, 2] in the ultrarelativistic
limit. For β < 1 there is no such cancellation:

αm +
αe

β2
≈ πw2l

3

[
w2

l2

(
1 + β2

2β2
ln

4l

w
− 1

4β2
− 3

4

)

−

−1
5

(

2− 1
β2

) (
ωl

βc

)2

− 1
β2γ2

]

. (10)

Here we used the frequency corrections to the static polar-
izabilities αe, αm from [9]. The first term in (10) is the
next-to-leading order static term, while the last term is the
leading static contribution for β < 1. The frequency cor-
rection, the second term in (10), vanishes when β = 1/

√
2

and changes sign at lower beam velocities. For small βs,
Eq. (10) has the opposite sign and larger magnitude com-
pared to its relativistic limit.

The transverse dipole impedance of a small disconti-
nuity (see derivation in [10]) is

�Z⊥(ω) = −iZ0β(αm + β−2αe)[ŝ · �d (κ)] �d (κ), (11)

where ŝ = �s/s is a unit vector in the direction of the beam
deflection from the chamber axis, and

�d (κ) ≡ �∇eν(0, κ) = −
∑

g

�∇eg(0)∇νeh
g

k2
g + κ2

. (12)

The impedance dependence on the discontinuity shape is
obviously the same as for the longitudinal impedance. The
direction of the vector of the transverse impedance (11)
gives the direction of the deflecting force acting on a dis-
placed beam. As one can see from Eq. (11), this direction
is defined by vector �d, Eq. (12), while the force magnitude
varies depending on the relative direction of the beam dis-
placement �s with respect to �d via the scalar product ŝ · �d.

For a circular beam pipe, Eq. (11) can be simplified:

�Z⊥(ω) = −iZ0
βαm + αe/β

π2b4

[
κb

2I1(κb)

]2

(ŝ · ĥ) ĥ , (13)

where ĥ = �b/b is a unit vector in the chamber cross section
S directed from the axis to the hole (discontinuity). In this
case, one can rewrite the dot product in a more conventional
form, ŝ·ĥ = cos(ϕs−ϕh), where ϕs is the azimuthal angle
of the beam position in the cross-section plane, and ϕh is
the azimuthal angle in the direction to the hole. Equation
(13) agrees, up to notations, with the result obtained in [7].

In a general case, it is sometimes convenient to rewrite
the dipole transverse impedance (11) as

�Z⊥(ω) = −iZ0β(αm +
αe

β2
) d2(κ) d̂ cos(ϕs−ϕd) . (14)

In particular, this form is more convenient for the rectangu-

lar chamber, see [10]. Here d =
√

d2
x + d2

y and d̂ = �d/d.

The angle ϕd — the azimuthal angle of �d in S — shows
the direction of the beam-deflecting force. The magnitude
of Z⊥ is maximal when the beam is deflected along this
direction and vanishes when the beam offset is perpendic-
ular to it. In a circular pipe, ϕd = ϕh. For a general cross
section, this is not the case even in the relativistic limit [2].

More results, as well as details of the impedance deriva-
tion, can be found in the recent paper [10].
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