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Abstract

We are outlining here some general aspects of coher-
ent synchrotron radiation (CSR). Our emphasis is the com-
parison of the radiation power with the Schwinger power
and with the power recently introduced by Saldin, Schnei-
dmiller and Yurkov. The latter power formula applies
to a one-dimensional bunch of particles moving on the
same spatial curve hence a line charge treatment is pos-
sible. The Schwinger power and the Saldin-Schneidmiller-
Yurkov power are closely related since both are defined in
terms of mechanical work per unit time. Originating from
the Lorentz-Dirac theory, the Schwinger power is the neg-
ative mechanical work per unit time done by half the re-
tarded minus half the advanced electromagnetic field. One
can view the Saldin-Schneidmiller-Yurkovpower as a mod-
ified Schwinger power which involves an electric field tai-
lored to cope with one-dimensional bunches. A merit of
the Saldin-Schneidmiller-Yurkov power is that it does not
involve the advanced field while a merit of the Schwinger
power is that it even can be applied to bunches which are
not one-dimensional. Nevertheless one-dimensional bunch
models are important since they are used in various CSR
codes and since they serve to some extent as role models for
higher-dimensional models as for example the Maxwell-
Vlasov approach of G.Bassi et al [1].

INTRODUCTION

Our topic is the synchrotron radiation (SR) emitted by a
one-dimensional bunch of particles or by a line charge. Our
main issue is the comparison of the radiation power with
the Schwinger power and with the Saldin-Schneidmiller-
Yurkov power. The radiation power is basically the flux of
the Poynting vector of the retarded electromagnetic field.
A bunch of N particles of charge q has charge density ρ
and current density j of the form:

ρ(t, x) = q

N∑

i=1

δ(x− xi(t)) ,

j(t, x) = q

N∑

i=1

ẋi(t)δ(x− xi(t)) ,

where xi(t) is the position of the i-th particle at time t
and q is the particle charge. Since we have to deal with
the Saldin-Schneidmiller-Yurkov power we have to assume
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that all particles of the bunch move with the same speed and
on the same spatial curve and so the backreaction of the ra-
diation on the particles is neglected. The line charges are
explained in a special section. Our emphasis is on analyt-
ical results - however numerical simulations are planned,
too.

ABOUT SR IN GENERAL

Definition: Synchrotron radiation (SR) is the electro-
magnetic radiation emitted from one or more relativistic
charged particles.

We thus deal with classical SR hence with Maxwell-
Lorentz theory. We confine, in this paper, to free space so
the effect of metallic boundaries is not taken into account.
We use SI-units - for a recent textbook on SR with SI-units,
see [2].

RADIATION POWER FOR A BUNCH OF
PARTICLES

The radiation power Ptrue of a bunch of N charged par-
ticles is defined for example in [2],[3]. It is a linear func-
tional of the Poynting vector S true of the bunch’s retarded
field: Strue := 1

μ0
(Eret ×Bret), where μ0 is the vacuum

magnetic permeability. For the comparison of the three
powers, the following quantities are useful as well [2],[3]:
— Fourier transform of Ptrue in time
— Total radiated energy

∫∞
−∞ Ptrue(t)dt.

The subscript true serves to remind that the ‘true’ bunch
consists of particles. Due to the linearity of the Maxwell
equations the retarded electromagnetic field (E ret, Bret)
is the sum of the retarded Lienard-Wiechert fields of the N
particles hence

Strue = SISR
true + SCSR

true ,

where

SISR
true :=

N∑

i=1

Si,i , SCSR
true :=

N∑

i,k=1
i�=k

Si,k ,

Si,k :=
1
μ0

(Ei
ret ×Bk

ret) ,

and where (E i
ret, B

i
ret) is the retarded Lienard-Wiechert

field of the i-th particle. If N = 1, i.e., for a bunch with
only one particle, the radiation power equals the relativistic
Larmor rate [3],[4]:

Ptrue(t) =
q2

6πc3ε0
γ4|ẍ(t)|2 ,
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where ε0 is the vacuum electric permeability, γ is the (con-

stant) Lorentz factor of the particle and c =
√

1
ε0μ0

. Note

that we used the fact that ẋ · ẍ = 0. Since Ptrue is a
linear functional of the Poynting vector S true and since
Strue = SISR

true + SCSR
true one can write, for an arbitrary

particle number N :

Ptrue = PISR
true + PCSR

true ,

where the definitions of P ISR
true and PCSR

true are obvious from
above. Clearly, P ISR

true is the sum of the relativistic Larmor
rates of the particles:

PISR
true (t) =

q2γ4
1

6πc3ε0

N∑

i=1

|ẍi(t)|2 .

Thus PISR
true is completely understood whereas, in general,

PCSR
true (t) is a very complicated function of t and only par-

tially understood. Hence Ptrue is an object of intense re-
search. A basic law of SR is the N 2-theorem: if the bunch
is concentrated at a point, i.e., x1(t) = ... = xN (t) then
Ptrue is N2 times the relativistic Larmor rate of a single
particle: Ptrue(t) = N2q2

6πc3ε0
γ4
1 |ẍ1(t)|2.

DEFINITION OF CSR

Definition: SR is called incoherent synchrotron radiation
(ISR) iff Ptrue ≈ PISR

true . Otherwise SR is called coherent
synchrotron radiation (CSR).

If the particles are widely separated, Ptrue ≈ PISR
true

hence SR=ISR. If N = 1 then Ptrue = PISR
true hence

SR=ISR. In the situation of the N 2-theorem one has:
PCSR

true = (N − 1)PISR
true hence, if N ≥ 2, SR=CSR.

The Fourier transform in time of Ptrue reveals that the
CSR-amount of SR is largely frequency dependent. One
has the rule of thumb: if the SR wavelength is compara-
ble to the bunch length then the ISR is negligible for that
wavelength. Thus, and due to the N 2-theorem, in early
synchrotrons the CSR was a concern at radio/microwave
frequencies [5],[6].

The double-sum structure of PCSR
true is a crucial feature

of CSR - it is responsible for interference effects between
the retarded Lienard-Wiechert fields of different particles
and this is the origin of the terminology: ‘coherent syn-
chrotron radiation’. CSR is an important effect for FEL’s,
linear colliders, bunch compressors etc. For a review of
CSR in accelerators see [7]. In astrophysics CSR is studied
in the context of radiopulsars.

SCHWINGER POWER FOR A BUNCH OF
PARTICLES

The Schwinger power for SR was studied in detail first
in 1949 [8]. The Schwinger power PSch of N charged par-
ticles is defined by:

PSch(t) := −
∫

j(t, x) ·ESch(t, x)d3x ,

where ESch := 1
2 (Eret − Eadv) and where Eadv is the

advanced electric field of the bunch. Note that −PSch is
the mechanical work per unit time done by E Sch. By the
linearity of the Maxwell equations we have

PSch(t) = −
N∑

i,k=1

∫
jk(t, x) ·Ei

Sch(t, x)d3x ,

where jk(t, x) := qẋk(t)δ(x− xk(t)) and where
Ei

Sch := 1
2 (Ei

ret − Ei
adv) with Ei

adv being the advanced
electric Lienard-Wiechert field of the i-th particle. Thus

PSch(t) = −q
N∑

i,k=1

ẋk(t) ·Ei
Sch(t, xk(t)) .

The Schwinger power is closely related with the Lorentz-
Dirac equation. In fact the Lorentz-Dirac theory gives
PSch = PISR

true + PCSR
Sch [4],[9] where

PCSR
Sch := −

N∑

i,k=1
i�=k

∫
jk(t, x) ·Ei

Sch(t, x)d3x

= −q

N∑

i,k=1
i�=k

ẋk(t) ·Ei
Sch(t, xk(t)) .

The underlying idea of the Schwinger power is sketched in
the section on heuristics.

SALDIN-SCHNEIDMILLER-YURKOV
POWER FOR A BUNCH OF PARTICLES

The Saldin-Schneidmiller-Yurkov (SSY) power is an im-
portant tool introduced in 1997 [10]. The SSY power
PSSY of N charged particles is defined by

PSSY (t) := PISR
true + PCSR

SSY ,

where PCSR
SSY is explained in more detail in the section on

heuristics.
Simulation programs using the SSY power are [11]:

— ELEGANT by M.Borland at Argonne Lab
— CSRtrack by M.Dohlus and T.Limberg at DESY
— simulation program by P.Emma at SLAC

LINE CHARGE

Recall that we assume that all bunch particles move with
the same speed v and on the same spatial curve X = X(s)
labeled by Euclidean arc length s. A line charge is ob-
tained by smoothing out the bunch of particles with a line
charge distribution function λ = λ(t, s). Thus λ(t, s)ds =
is the number of particles between s and s + ds at time
t. The function λ allows to transform particle observables
into line charge observables via the replacement:

∑N
i=1 →∫

λ(t, s)ds. For example, one transforms PSch as follows:
since the trajectory of the i-th particle is of the
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form xi(t) = X(Si(t)) with Si(t) = Si(0) + vt
one has, due to the double-sum structure of PSch, a
function P̃Sch = P̃Sch(s, s′) such that PSch(t) =∑N

i,k=1 P̃Sch(Si(t), Sk(t)). Thus one transforms PSch

via PSch → PSch,line, where

PSch,line(t) :=
∫

λ(t, s)λ(t, s′)P̃Sch(s, s′)ds′ds .

Analogously one performs the transformations PSSY →
PSSY,line and Ptrue → Pline. Note that PSSY,line is stud-
ied in detail in [10],[12] and P line in [13],[14],[15].

HEURISTIC COMPARISON OF THE
THREE POWERS

Since radiation is an essentially irreversible phenomenon
one may adopt the following heuristic model of radiation:
because

Eret =
1
2
(Eret −Eadv) +

1
2
(Eret + Eadv) ,

and since 1
2 (Eret + Eadv) and 1

2 (Eret −Eadv) have con-
trary behaviors under time reversal [4] one is led to the be-
lief [8] that

Ptrue(t) ≈
−1

2

∫
j(t, x) · (Eret(t, x)−Eadv(t, x))d3x ,

i.e., Ptrue ≈ PSch. Note that the Schwinger power is finite
for particles (and even for a line charge, a surface charge
and a volume charge).

However, the mechanical work per unit time done by
Eret:

dEmech

dt
(t) :=

∫
j(t, x) ·Eret(t, x)d3x ,

is infinite for a line charge and for particles. Nevertheless
dEmech

dt is finite for a volume charge and a surface charge
and numerical simulations of dEmech

dt are an important en-
terprise in the accelerator community - for a surface charge,
see for example the Maxwell-Vlasov approach in [1],[16].

The same idea as for the Schwinger power may be ap-
plied to the SSY power: PCSR

SSY can be obtained by replac-
ing in PCSR

Sch the field Ei
Sch by subtracting from E i

ret a
Coulomb term (this procedure is called ‘renormalization’
in [10],[12]). The SSY power is finite for line charge
and particles (and undefined for volume charge and sur-
face charge). An advantage of the SSY power over the
Schwinger power is that the SSY power does not involve
advanced fields. An advantage of the Schwinger power
over the SSY power is that the Schwinger power has a
wider scope since it even works for bunches whose par-
ticles do not move on the same spatial curve.

WHAT NEXT

We will compare Ptrue with PSch and PSSY and we
will compare Pline with PSch,line and PSSY,line. We will
study various geometries of the orbit X(s) (arc, piecewise
linear etc.) and various distribution functions λ of the line
charge (tophat, Gaussian etc.).
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