
PARALLEL 3-D SPACE CHARGE CALCULATIONS IN THE UNIFIED
ACCELERATOR LIBRARY∗

N.L. D’Imperio, A.U. Luccio, N. Malitsky, BNL, Upton, NY 11973-5000, USA
O. Boine-Frankenheim, GSI, Darmstadt, Germany

Abstract

The paper presents the integration of the SIMBAD space
charge module in the UAL framework. SIMBAD is a
Particle-in-Cell (PIC) code. Its 3-D Parallel approach fea-
tures an optimized load balancing scheme based on a ge-
netic algorithm. The UAL framework enhances the SIM-
BAD standalone version with the interactive ROOT-based
analysis environment and an open catalog of accelerator al-
gorithms. The composite package addresses complex high
intensity beam dynamics and has been developed as part of
the FAIR SIS 100 project.

INTRODUCTION

Space charge calculations in beam dynamics simulation
codes are often computationally expensive. The burden is
magnified when one talks about simulation in three dimen-
sions. The Unified Accelerator Libraries (UAL)[1] envi-
ronment provides a module, SIMBAD [2], which performs
parallel space charge calculations in both two and three di-
mensions using the Paricle In Cell (PIC) method. The Par-
allel 3-D implementation employed by SIMBAD involves
dividing the beam longitudinally into numerous segments
and performing 2-D transverse space charge calculations
on each segment separately. In this manner parallelization
consists of each process tracking only those macroparti-
cles contained within the segments assigned to it and com-
munication is limited to macroparticle transfer across pro-
cess boundaries as a result of synchrotron motion. Since
synchrotron motion is a relatively slow process, interpro-
cess communication can be kept to a minimum. When the
bunch is contained in an RF bucket, the situation becomes
more complex from the perspective of parallel computing.
The computational load between processes becomes unbal-
anced if the problem is decomposed in a naiive way. In or-
der for all processors to be optimally utilized, some form
of load balancing is necessary. SIMBAD uses a genetic al-
gorithm to find the optimal configuration of segments to
assign to each process taking into account both the num-
ber of segments and the number macroparticles ultimately
given to each process to achieve a balanced computational
load.

This paper presents some implementation details of the
load balancer as well as performance analysis of the code

∗Work performed under the auspices of the US Department of Energy
and with the support of the European Community RESEARCH INFRAS-
TRUCTURES ACTION under the FP6 programme: Structuring the Euro-
pean Research Area-Specific Support Action - DESIGN STUDY (contract
515873 - DIRAC Secondary-Beams.)

while simulating a bunched beam in the Alternating Gradi-
ent Synchrotron (AGS).

UAL SIMULATION ENVIRONMENT

The UAL environment addresses the complex simulation
tasks of modern beam dynamics studies. It offers an open
collection of accelerator algorithms and a consistent mech-
anism for building configurable project- specific accelera-
tor off-line models. A cornerstone of this mechanism is the
Element-Algorithm-Probe framework which identifies the
association among three major concepts. The Element part
represents accelerator magnets and devices. In UAL, a hier-
archical tree of accelerator components is organized as the
Standard Machine Format (SMF) module. All accelerator
propagators are derived from a basis class Algorithm and
are initially separated from the accelerator elements. In ap-
plications, algorithms can be dynamically loaded and con-
nected in accordance with the user text file written in Ac-
celerator Propagator Description Format (APDF). Probes
could be any obects (e.g. Bunch, Twiss function, Taylor
maps, etc.) evolved by the corresponding algorithms.

In a typical simulation with SIMBAD trackers and
Accelerator Instrumentation Module (AIM) monitors, a
SIMBAD tracker is associated with all element types
with the exception of monitors. Internally, the SIM-
BAD::TSCPropagatorFFT class is implemented as a com-
posite model combining a space charge kick and a conven-
tional tracker selected from a catalog of UAL algorithms
such as the thin-lens integrator of TEAPOT or the Taylor
map of ZLIB.

Figure 1: Schematic of the Unified Accelerator Libraries
showing the various modules.

Space charge forces are calculated in SIMBAD [3] via
the solution of the Poisson equation in integral form

Φ(P ) =
1

4πε0γ2

∫
ρ(Q)

r
dQ

Proceedings of EPAC 2006, Edinburgh, Scotland THPCH026

05 Beam Dynamics and Electromagnetic Fields
D03 High Intensity - Incoherent Instabilities, Space Charge, Halos, Cooling

2835



where Φ is the electric potential, P is a field point and Q
a source point. The macroparticles are binned on a mesh
giving the charge distribution. If beam bunches are long,
as is in the case of synchrotrons, the approximation that the
beam current is locally parallel to the walls may be made.
In this case we can integrate the Poisson equation and rep-
resent the partial compensation between space charge re-
pulsion and current attraction with a factor, γ 2.

3D SPACE CHARGE CALCULATIONS
AND LOAD BALANCING

An accurate 3-D PIC simulation [4] requires on the order
of 106 macroparticles to provide meaningful statistics on
the meshes commonly used. At each space charge tracker
the beam is divided along the longitudinal axis into ET seg-
ments which are, in turn, divided among the processes so
that a given process has Ei segments. The global num-
ber of macroparticles is NT and the number of macroparti-
cles in a given process, which is determined by the number
of macroparticles in Ei local segments, is denoted by Ni.
This technique of dividing the beam into many segments
is computationally expensive as it requires ET solves of
the Poisson equation at each space charge element in the
ring. Parallel computing is utilized for practical simula-
tions. In allocating the number of segments to be given
to each process, a naiive approach may be used that sim-
ply divides the number of segments, ET , by the number
of processes, P . While this configuration is acceptable for
coasting beams, resulting in roughly equal N i’s, this is not
the case for bunched beams which have non-uniform lon-
gitudinal densities. For bunched beams the N i’s may be
very different. This results in a very uneven allocation of
load among the processes. To even the load it is necessary
to find a configuration of Ei’s and corresponding Ni’s such
that the work done by each process is as equal as possible.
This can be effectively done using a genetic algorithm to
determine the optimal configuration.

GENETIC LOAD BALANCING
ALGORITHM

Since communication between processes is limited to
particle exchange across the process boundaries the 3-D
parallelization is reduced to a problem of optimal load bal-
ance with the objective being to distribute the computa-
tional burden as evenly among the processes as possible.
The computational requirements are dependent on two pa-
rameters. The local number of space charge segments over
which the Poisson equation must be solved and the total
number of macroparticles in the local bunch. SIMBAD
dynamically calculates an optimal decomposition of space
charge segments to be given to each process based on both
parameters. The genetic algorithm utilizes two parents, F
and M, and two offspring, S and D, each of which repre-
sents a different distribution of elements among the pro-
cesses. They can be implemented as arrays where each el-

Figure 2: A bunch of macroparticles confined in an RF
bucket divided into sixty-four segments over eight pro-
cesses. The array of numbers represents an optimal con-
figuration of segments where each element in the array de-
notes a process and the value of the element is the number
of segments given to the process. The columns of numbers
in the upper right corner lists the number of macroparticles
in each process.

ement of the array maps to a process and the value of the
element contains the number of space charge segments for
that process.

There are three phases to the algorithm, mating, natural
selection, and mutation. The mating phase combines the
parents using an alternating element scheme to create the
two offspring. This simply means that an offspring receives
its first element value starting with one parent, then gets its
second element value from the other parent, repeating this
pattern until the last element, which is just ET −

∑P−1
i=1 Si,

where P is the number of processes and S is the offspring
array. The other offspring repeats this procedure but be-
gins with the opposite parent. Natural Selection uses a
comparison function h = f + w ∗ g to determine which

configuration is optimal where f =
∑P

i=1

(
1− P ·Ei

ET

)
and

g =
∑P

i=1

(
1− P ·Ni

NT

)
. w is a weighting factor for the two

parameters and is a function of both. The mutation compo-
nent of the algorithm introduces a random variation in one
member of the naturally selected pair. The process then re-
peats and iteration continues until an optimized solution is
found.

PERFORMANCE ANALYSIS

Parallel performance is measured by speedup and effi-
ciency, S(n, P ) = Ts(n)

Tp(n,P ) and E(n, P ) = S(n,P )
P re-

spectively. Ts(n) is the runtime of a serial solution with
problem size n, Tp(n, P ) the runtime of a parallel solu-
tion with P processes. For a fixed value of P , typically

THPCH026 Proceedings of EPAC 2006, Edinburgh, Scotland

2836 05 Beam Dynamics and Electromagnetic Fields
D03 High Intensity - Incoherent Instabilities, Space Charge, Halos, Cooling



F M

S D

Mating

Natural Selection

S M

Mutate

F

M

D

F

M

S

6

11 9 10

11 9 6 5 96 12

11 9 7 5 6 6 9 11

11 9 6 5 5 6 9 13

9 7 6 6 6

F

M

M

11 9 6 5 9 12

11 9 5 5 6 9 13

9 6 5 5 6 912 12

6

6 6

13 6 58 5 6 8 13

After Iterations

Figure 3: One iteration of the genetic load balancing al-
gorithm together with the optimal result. Mating occurs
between F and M to produce S and D. Each offspring takes
alternating values from both parents with S beginning with
F and D beginning with M. The last element in each off-
spring array contains ET −

∑P−1
i=1 Si with P the number

of processes and Si the array elements. Natural selection
chooses F and S as the optimal pair and so the values of M
are replaced with those of S. The mutation is introduced in
the new M. The optimal solution shown was reached within
one hundred iterations. For comparison, a linear search for
a solution would require tens of thousands of iterations.

0 10 20 30 40 50 60 70
Number of Processes

0

10

20

30

40

50

60

70

S(n, p)

Ideal Linear
Load Balancing
no Load Balancing

Parallel Speedup

Figure 4: Speedup, while not linear, is acceptable up to
sixty-four processes.

0 < S(n, P ) ≤ P . If S(n, P ) = P the program has lin-
ear speedup. Ideally all parallel programs should exhibit
linear speedup, but this is seldom the case. Primarily, the
cause is due to communication that is considerably slower
than computation in parallel computers. Efficiency mea-
sures the process utilization in a parallel program and in
most cases E(n, P ) ≤ 1. The program was tested by mod-
eling the AGS on a beowulf cluster using up to 64 proces-

0 10 20 30 40 50 60
Number of Processes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
(n

,p
)

Load Balancing
No Load Balancing

Parallel Efficiency

Figure 5: Efficiency improvements of up to 50% are real-
ized with load balancing.

sors. Parallel performance does not scale linearly but this
was expected since the communication is Gigabit Ethernet
and is not of comparable performance to the computational
capabilities of the 2.4 GHz Intel P4 processors. Parallel ef-
ficiency shows the improvements acheived using load bal-
ancing which, in the best case, was 50 percent. The results
for four, eight, and sixteen processes all showed good im-
provement in efficiency. The corresponding results for one,
two and sixty four processes were far less dramatic. For
these cases the number of possible configurations is either
quite limited or non-existent.

CONCLUSION

A Parallel 3-D space charge module, SIMBAD, was im-
plemented for UAL utilizing genetic load balancing to im-
prove runtime performance. The AGS was successfully
used as a test simulation and efficiency improvements of
up to 50% were realized.

REFERENCES

[1] N.Malitsky and R.Talman, ’Unified Accelerator Libraries’,
Technical Report AIP 391, American Institute of Physics,
Melville, New York, 1996

[2] A.U.Luccio and N.L.D’Imperio, ’Simbad User’s Manual,
Version 1.36’, Technical Report C-A/AP/222, Brookhaven
National Laboratory, Upton, NY, 2005

[3] J.Beebe-Wang et al., ’Space charge simulation methods
incorporated in some multi-particle tracking codes and
their results comparison’. Proc. Eighth European Par-
ticle Accelerator Conference, La Villete-Paris, France,
http://jacow.web.cern.ch/JACOW, June 2002.

[4] A.U.Luccio et al., ’Numerical Methods for the Simulation
of High Intensity Hadron Synchrotrons’, Proceedings of
Coulomb’05, Sept 12-16, Senigallia, Italy, 2005.

Proceedings of EPAC 2006, Edinburgh, Scotland THPCH026

05 Beam Dynamics and Electromagnetic Fields
D03 High Intensity - Incoherent Instabilities, Space Charge, Halos, Cooling

2837


