08 Applications of Accelerators, Technology Transfer and Industrial Relations

U02 Materials Analysis and Modification

Paper Title Page
WEPCH181 Ion Implantation Via Laser Ion Source 2355
 
  • F. Belloni, D. Doria, A. Lorusso, V. Nassisi
    INFN-Lecce, Lecce
 
  We report on the development of a new implantation technique via laser ion source. By applying a high voltage on the accelerating gap, this compact device was able to accelerate towards a substrate ions from ablation plasma. The occurrence of arcs during the extraction phase was a major problem to overcome. A pulsed KrF laser was utilized to produce plasma by ablation of solid targets. Radiation wavelength and pulse duration were 248 nm and 20 ns, respectively. The laser beam, 70 mJ per pulse, was focused onto different targets in a spot of about 1 mm2 in surface, obtaining an irradiance value of about 3.5 x 108 W/cm2. The implanted samples were characterized by energy dispersive x-ray spectroscopy, Rutherford backscattering spectrometry and x-ray photoelectron spectrometry. Implantations of Al, Cu and Ge on Si substrates were carried out up to 80 nm in depth, operating at 40 kV acceleration voltage. Ion dose was estimated by Faraday cup diagnostics. It was of the order of 1010 ions/cm2 per pulse.  
WEPCH182 Design of 9.4 GHz 950 keV X-band Linac for Nondestructive Testing 2358
 
  • T. Yamamoto, T. Natsui, M. Uesaka
    UTNL, Ibaraki
  • M. Akemoto, S. Fukuda, T. Higo, M. Yoshida
    KEK, Ibaraki
  • K. Dobashi
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken
  • E. Tanabe
    AET Japan, Inc., Kawasaki-City
 
  Mobile "suit-case-sized" x-band (9.4GHz) 950 keV linac is designed for applications of nondestructive testing (NDT). Conventional device for the purpose is the S-band linac, but its drawback is a rather large device-size, large electron beam spot size of about 3 mm and lack of spatial resolution. We aim to realize the smaller spot size about 500 micro-m by a low emittance beam. The proposed system consists of the 9.4 GHz magnetron, modulator, thermionic RF electron gun and 9.4 GHz x-band linac and metal target for x-ray generation. The energy at the gun is 20 keV, and the final energy becomes 950 keV. Now, we are designing the linac structure of the pai/2 mode and analyzing the electromagnetic field (EMF) by SUPERFISH. At this time, we finish analyzing EMF of regular cavity cells and we are analyzing EMF of total accelerating tube. We have finished the detailed RF design. Further, we are also performing the design of the pai mode and going to discuss the advantages and drawbacks between them. Construction of the RF supplying system is underway. The detailed design parameters and updated status of the construction are presented at the spot.  
WEPCH183 Enhancement of Mechanical Properties of High Chromium Steel by Nitrogen Ion Implantation 2361
 
  • B.S. Kim, S.-Y. Lee
    Hankuk Aviation University, KyungKi-Do
  • K. R. Kim, J.S. Lee
    KAERI, Daejon
 
  This article reports the study of mechanical properties of high chromium steel after N-ion implantation. The samples are implanted with 120keV N-ion at doses ranging from 1x1017ions/square cm to 4x1018ions/square cm. Mechanical properties of implanted samples are compared with those of Cr-plated samples. The compositions of the N-ion implanted layer were measured by Auger electrons spectroscopy(AES). Their mechanical properties as a function of N-ion doses were characterized by nano-indentation, sliding and impact wear tests. The results reveal that the hardness and mechanical properties of ion implanted samples were found to depend strongly on the ion doses. The hardness of the N-ion implanted sample with 2x1018ions/? was measured to be approximately 9 GPa, which is approximately 2.3 times higher than that of un-implanted sample (H=3.8 GPa). Also wear properties of N-ion implanted samples with 2x1018ions/? were largely improved ;compared to the Cr-plated samples, the width of wear track and friction coefficient developed on the N-ion implanted samples are about 60% and 40% smaller, respectively.  
WEPCH184 Mechanical Properties of WC-Co by Nitrogen Ion Implantation: Improvement of Industrial Tools 2364
 
  • Y. Noh, B.Y. Kim, K. R. Kim, J.S. Lee
    KAERI, Daejon
 
  Ion implantation of WC-Co has been widely investigated for the improvement of wear resistance, but rarely for friction behavior. Although friction is closely associated with wear, more factors influence friction than wear, and low wear does not generally lead to low friction w6x. Therefore, we focus our study on the effects of ion implantation on the mechanical properties in WC-Co cermets, with particular interest in tool industry applications.