A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Zlobin, A.V.

Paper Title Page
WEPLS112 Study of 2-in-1 Large-aperture Nb3Sn IR Quadrupoles for the LHC Luminosity Upgrade 2643
 
  • A.V. Zlobin, V. Kashikhin
    Fermilab, Batavia, Illinois
 
  After LHC operates for several years at nominal parameters, it will be necessary to upgrade it to higher luminosity. Replacement of the low-beta insertions with higher performance design based on advanced superconducting magnets is one of the most straightforward steps in this direction. An interesting option for a new IR design is a double bore inner triplet with separation dipoles placed in front of the focusing quadrupoles. This approach reduces the number of parasitic collisions by more than a factor of three with respect to the quadrupoles-first option and allows independent field error correction for each beam. Several designs of the 2-in-1 Nb3Sn quadrupole magnets suitable for the LHC IR upgrade have been studied, including magnets with "cold" and "warm" iron yokes based on symmetric or asymmetric coils. This paper describes the design concepts of 2-in-1 large-aperture IR quadrupoles and compares their major performance parameters, including aperture, field gradient, field quality, electromagnetic stresses in the coils, and discuss some technological aspects of magnet fabrication.  
WEPLS109 Test Results of Fermilab-built Quadrupoles for the LHC Interaction Regions 2637
 
  • M.J. Lamm, R. Bossert, J. DiMarco, SF. Feher, A. Hocker, J.S. Kerby, A. Nobrega, I. Novitski, R. Rabehl, P. Schlabach, J. Strait, C. Sylvester, M. Tartaglia, J. Tompkins, G. Velev, A.V. Zlobin
    Fermilab, Batavia, Illinois
 
  The US-LHC Accelerator Project has recently completed the manufacturing and testing of the Q2 optical elements for the LHC interaction region final focus. Each Q2 element consists of two identical quadrupoles (MQXB) with a dipole orbit corrector (MQXB). The Fermilab designed MQXB has a 70 mm aperture and a peak operating gradient of 215 T/m. This paper summarizes the test results for the MQXB program with emphasis on quench performance and alignment studies.