A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Yarba, V.

Paper Title Page
WEPLS007 A Six-dimensional Muon Beam Cooling Experiment 2409
 
  • R.P. Johnson, M. Alsharo'a, M.A.C. Cummings, M. Kuchnir, K. Paul, T.J. Roberts
    Muons, Inc, Batavia
  • D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois
  • V.S. Kashikhin, V. Yarba, K. Yonehara
    Fermilab, Batavia, Illinois
 
  Ionization cooling, a method for shrinking the size of a particle beam, is an essential technique for the use of muons in future particle accelerators. Muon colliders and neutrino factories, examples of such future accelerators, depend on the development of robust and affordable ionization cooling technologies. A 6D cooling experiment has been proposed, incorporating a novel configuration of helical and solenoidal magnets in a prototype cooling channel. This Helical Cooling Channel (HCC) experiment is being designed with simulations and prototypes to provide an affordable and striking demonstration that 6D muon beam cooling is understood well enough to enable intense neutrino factories and high-luminosity muon colliders. Because of the large amount of expected beam cooling, helium instead of hydrogen can be used for the initial experiment, avoiding the safety complications of hydrogen. Cryostats are currently being developed using internal heat exchangers for simple, effective and safe hydrogen absorber systems to use in later cooling experiments and real cooling channels. The experimental design choices and corresponding numerical simulations are reviewed.  
WEPLS009 Summary of the Low Emittance Muon Collider Workshop (February 6-10, 2006) 2412
 
  • R.P. Johnson, K. Paul
    Muons, Inc, Batavia
  • V. Yarba
    Fermilab, Batavia, Illinois
 
  The Low Emittance Muon Collider workshop, held at Fermilab February 6-10, 2006 focused on the development of high-luminosity muon colliders using extreme muon beam cooling, where many constraints on muon collider designs are alleviated with beams of smaller emittance and lower intensity. The workshop covered topics related to proton drivers, targetry, muon capture, bunching, cooling, cooling demonstration experiments, bunch recombination, muon acceleration, collider lattices, interaction-point design, site boundary radiation, and detector concepts for energy frontier and Higgs particle studies. Lower emittance allows for a reduction in the required muon current for a given luminosity and also allows high energy to be attained by recirculating the beam through high frequency ILC RF cavities. The highlights of the workshop and the prospects for such colliders will be discussed.