A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Yamazaki, A.

Paper Title Page
WEPLS028 Improvement of Electron Generation from a Laser Plasma Cathode through Modified Preplasma Conditions Using an Artificial Prepulse 2448
 
  • K. Kinoshita, T. Hosokai, K. Kobayashi, A. Maekawa, T. Ohkubo, T. Tsujii, M. Uesaka
    UTNL, Ibaraki
  • A. Yamazaki
    KURRI, Osaka
  • A.G. Zhidkov
    NIRS, Chiba-shi
 
  We have been studying the effects of laser prepulses, plasma cavity formation, wave breaking processes in the laser plasma acceleration. It is important to control the preplasma conditions, so as to stabilize the laser plasma acceleration. The modification of the conditions of the laser plasma interaction through an artificial prepulse, magnetic fields, and/or gas density modulation will affect on the characteristics of accelerated electron beams. As the first step, we carry out experiments with an artificial prepulse. If a shockwave driven by the artificial prepulse matches the main pulse foccal position, localized wave breaking may occur effectively, and consequent electron generation will be enhanced. We use a pulse with 10% energy of the main pulse and 300 ps duration to be focused on the interaction point of the gas jet, to change the plasma distribution there. Using the single-shot diagnosis, we investigate the mechanism and technique to improve the properties of electron beams. We observed a strong correlation between the generation of monoenergetic electrons and optical guiding of the main pulse, during the interaction of 11 TW 37 fs laser pulse and He gas jet.  
WEPLS029 Monoenergetic 200fs (FWHM) Electron Bunch Measurement from the Laser Plasma Cathode 2451
 
  • A. Maekawa, T. Hosokai, K. Kinoshita, K. Kobayashi, T. Ohkubo, T. Tsujii, M. Uesaka
    UTNL, Ibaraki
  • Y. Kondo, Y. Shibata
    Tohoku University, Sendai
  • T. Takahashi, A. Yamazaki
    KURRI, Osaka
  • A.G. Zhidkov
    NIRS, Chiba-shi
 
  A laser plasma accelerator is the most promising approach to compact accelerators that can generate femtosecond electron bunches. It is expected that the electron bunch duration less than 100fs can be achieved owing to the high frequency of plasma waves. Since the time-resolution of the fastest streak camera is only 200fs, we have to use the coherent transition radiation (CTR) measurement or E/O (electro-optical) method. We plan to perform a single-shot measurement by getting the whole CTR spectrum by a IR polychromator in near future. As the first step forward it, we used a IR bolometer with different filters and obtained the average spectrum. We can generate monoenergetic electron bunches in the condition of laser intensity 3x1019W/cm2 and electron density 6x1019cm-3. The charge is estimated to be about 10pC using ICT (Integrated Current Transformer). The electron bunch accelerated by plasma waves penetrates 300um Ti-foil, and transition radiation is emitted. We measure CTR spectrum using a bolometer. Spectrum distribution of CTR depends on the electron bunch distribution, therefore we can evaluate the bunch duration from it. In the experiment, bunch duration can be estimated.