A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Tumaikin, G.M.

 
Paper Title Page
MOPLS038 Beam Energy Calibration in Experiment on Precise Tau Lepton Mass Measurement at VEPP-4M with KEDR Detector 625
 
  • A. Bogomyagkov, V.E. Blinov, S. Karnaev, V. Kiselev, E.V. Kremyanskaya, E. Levichev, O.I. Meshkov, S.I. Mishnev, I. Morozov, N.Yu. Muchnoi, S.A. Nikitin, I.B. Nikolaev, A.G. Shamov, D.N. Shatilov, E.A. Simonov, A.N. Skrinsky, V.V. Smaluk, Yu.A. Tikhonov, G.M. Tumaikin, V.N. Zhilich
    BINP SB RAS, Novosibirsk
 
  Experiment on mass measurement of tau lepton requires an absolute energy calibration. The resonant depolarization technique is used for most accurate (1 keV) but once at a time energy calibration. The measured energy is used for calibration of the germanium detector for Compton backscattering energy monitoring. The developed Compton backscattering facility allows continuous energy monitoring with accuracy of 50 keV for 10 minutes of data acquisition. The tau lepton threshold is in the vicinity of integer spin resonance, which minimizes polarization lifetime in the presence of vertical orbit distortions. Therefore, spin matching of the VEPP-4M is required. The achieved lifetime is sufficient for absolute energy calibration.  
THOBFI03 Record-high Resolution Experiments on Comparison of Spin Precession Frequencies of Electron Bunches Using the Resonant Depolarization Technique in the Storage Ring 2787
 
  • S.A. Nikitin, O. Anchugov, V.E. Blinov, A. Bogomyagkov, V.P. Cherepanov, G.V. Karpov, V. Kiselev, E. Levichev, I.B. Nikolaev, A.A. Polunin, E. Shubin, E.A. Simonov, V.V. Smaluk, M.V. Struchalin, G.M. Tumaikin
    BINP SB RAS, Novosibirsk
 
  The opportunity of performing an experiment on high precision comparison of the electron and positron anomalous magnetic moments following the VEPP-2M experiment is under study at the VEPP-4M storage ring. The record accuracy of 2x10-8 was obtained for comparison of spin precession frequencies in the experiment on resonant depolarization with simultaneously circulating electron bunches, two of them polarized and one unpolarized. It is the first time when the spreading of the spin precession frequency line (~5x10-7,) due to scattering of particle trajectories about the equilibrium orbit in a non-linear field of the storage ring, was presumably observed in experiments. We proposed and realized an RF scheme for controlled separation of the spin precession frequencies of two electron bunches; the first measurements using this scheme were made.  
slides icon Transparencies