A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Todesco, E.

Paper Title Page
MOPLS015 Quality Control Techniques Applied to the Large Scale Production of Superconducting Dipole Magnets for LHC 568
 
  • F. Savary, M. Bajko, J. Beauquis, G. De Rijk, N. Emelianenko, P. Fessia, P. Hagen, J. Miles, L. Rossi, E. Todesco, J. Vlogaert, C. Vollinger, E.Y. Wildner
    CERN, Geneva
 
  The LHC accelerator, under construction at CERN, is characterized by the use on a large scale of high field superconducting dipoles: the 27-km ring requires 1232 15-m long dipole magnets designed for a peak field of 9 T. The coils are wound with Rutherford-type cable based on copper-stabilized Nb-Ti superconductors and will be operated at 1.9 K in pressurized superfluid helium. The challenge that had to be faced has been an efficient, cost-effective and reproducible mass production to very tight tolerances: the field quality must be better than 10-4 and the geometry of the cold bore tube and magnet controlled to 0.1 mm over the whole length, any deviation being liable to induce delays and significant cost increase. This paper presents the main methods and tools chosen to face successfully this challenge: some methods were foreseen in the technical specification, others were implemented based on the experience gained in several years of fabrication.  
WEPCH139 WISE: An Adaptative Simulation of the LHC Optics 2248
 
  • P. Hagen, M. Giovannozzi, J.-P. Koutchouk, T. Risselada, S. Sanfilippo, E. Todesco, E.Y. Wildner
    CERN, Geneva
 
  The LHC beam dynamics requires a tight control of the magnet field quality and geometry. As the production of the magnets advances, decisions have to be made on the acceptance of possible imperfections. To ease decision making, an adaptative model of the LHC optics has been built, based on the current information available (e.g. magnetic measurements at warm or cold, magnet allocation to machine slots) as well as on statistical evaluations for the missing information (e.g. magnets yet to be built, measured, or for non-allocated slots). The uncertainties are included: relative and absolute measurement errors, warm-to-cold correlations for the fraction of magnets not measured at cold, hysteresis and power supply accuracy. A pre-processor generates instances of the LHC ring for the MADX program, with the possibility of selecting various error sources. A post-processor computes ranges for relevant beam optics parameters and distributions. This approach has been applied to the expected beta-beating, to the possible impact of permeability issues in some quadrupole collars, to the geometrical displacements of the multipolar correctors and to prioritize the magnetic measurement programme.  
WEPLS097 Random Errors in Superconducting Dipoles 2601
 
  • B. Bellesia, E. Todesco
    CERN, Geneva
  • C. Santoni
    Université Blaise Pascal, Clermont-Ferrand
 
  The magnetic field in a superconducting magnet is mainly determined by the position of the conductors. Hence, the main contribution to the random field errors comes from random displacement of the coil with respect to its nominal position. Using a Monte-Carlo method, we analyze the measured random field errors of the main dipoles of the LHC, Tevatron, RHIC and HERA projects in order to estimate the precision of the conductor positioning reached during the production. The method can be used to obtain more refined estimates of the random components for future projects.  
WEPCH141 Accelerator Physics Code Web Repository 2254
 
  • F. Zimmermann, R. Basset, E. Benedetto, U. Dorda, M. Giovannozzi, Y. Papaphilippou, T. Pieloni, F. Ruggiero, G. Rumolo, F. Schmidt, E. Todesco
    CERN, Geneva
  • D.T. Abell
    Tech-X, Boulder, Colorado
  • R. Bartolini
    Diamond, Oxfordshire
  • O. Boine-Frankenheim, G. Franchetti, I. Hofmann
    GSI, Darmstadt
  • Y. Cai, M.T.F. Pivi
    SLAC, Menlo Park, California
  • Y.H. Chin, K. Ohmi, K. Oide
    KEK, Ibaraki
  • S.M. Cousineau, V.V. Danilov, J.A. Holmes, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee
  • L. Farvacque
    ESRF, Grenoble
  • A. Friedman
    LLNL, Livermore, California
  • M.A. Furman, D.P. Grote, J. Qiang, G.L. Sabbi, P.A. Seidl, J.-L. Vay
    LBNL, Berkeley, California
  • D. Kaltchev
    TRIUMF, Vancouver
  • T.C. Katsouleas
    USC, Los Angeles, California
  • E.-S. Kim
    PAL, Pohang, Kyungbuk
  • S. Machida
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • J. Payet
    CEA, Gif-sur-Yvette
  • T. Sen
    Fermilab, Batavia, Illinois
  • J. Wei
    BNL, Upton, Long Island, New York
  • B. Zotter
    Honorary CERN Staff Member, Grand-Saconnex
 
  In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this web repository, illustrate its usage, and discuss our future plans.  
WEPLS100 Performance of LHC Main Dipoles for Beam Operation 2610
 
  • G. De Rijk, M. Bajko, L. Bottura, M.C.L. Buzio, V. Chohan, L. Deniau, P. Fessia, J. Garcia Perez, P. Hagen, J.-P. Koutchouk, J. Kozak, J. Miles, M. Missiaen, M. Modena, P. Pugnat, V. Remondino, L. Rossi, S. Sanfilippo, F. Savary, A.P. Siemko, N. Smirnov, A. Stafiniak, E. Todesco, D. Tommasini, J. Vlogaert, C. Vollinger, L. Walckiers, E.Y. Wildner
    CERN, Geneva
 
  At present about 75% of the main dipoles for the LHC have been manufactured and one of the three cold mass assemblers has already completed the production. More than two third of the 1232 dipoles needed for the tunnel have been tested and accepted. In this paper we mainly deal with the performance results: the quench behavior, the magnetic field quality, the electrical integrity quality and the geometry features will be summarized. The variations in performance associated with different cold mass assemblers and superconducting cable origins will be discussed.  
WEPLS105 Performance of the LHC Arc Superconducting Quadrupoles towards the End of their Series Fabrication 2625
 
  • T. Tortschanoff, P. Hagen, M. Modena, L. Rossi, S. Sanfilippo, K. M. Schirm, E. Todesco, E.Y. Wildner
    CERN, Geneva
  • R. Burgmer, H.-U. Klein, D. Krischel, B. Schellong, P. Schmidt
    ACCEL, Bergisch Gladbach
  • M. Durante, A. Payn, F. Simon
    CEA, Gif-sur-Yvette
 
  The fabrication of the 408 main arc quadrupole magnets and their cold masses will come to an end in summer 2006. A rich collection of measurement and test data has been accumulated and their analysis is presented in this paper. These data cover the fabrication and the efficiency in the use of the main components, the geometrical measurements and the achieved dimensional precision, the warm magnetic measurements in the factory and the performance at cold conditions, especially the training behaviour. The scrap rate of the NbTi/Cu conductor as well as that of other components turned out to be acceptably low and the quench performance measured was in general very good. Most quadrupoles measured so far exceeded the operating field gradient with one or no quench. The multipole content at cold was measured for a limited numbers of quadrupoles as far as needed for verifying the warm-to-cold correlation. From the point of view of field quality, all quadrupoles could be accepted for the machine and the measures taken to overcome the problem of a too high permeability of a batch of collars are discussed.