A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Tamura, J.

Paper Title Page
TUPLS097 Application of DPIS to IH Linac 1729
 
  • J. Tamura, J. Hasegawa, T. Hattori, N. Hayashizaki, T. Ishibashi, T. Ito
    Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo
  • A. Kondrashev
    ITEP, Moscow
  • M. Okamura
    RIKEN, Saitama
 
  We are now designing a Laser Ion Source (LIS), which will be operated with an Inter-digital H (IH) structure linac using the Direct Plasma Injection Scheme (DPIS). The DPIS has been applied to RFQ linacs and has successfully achieved very high current with simple structure. The IH structure linac was designed to accept 40 keV proton beam which could be produced by the DPIS. The combination of the DPIS and IH structure linac will realize quite compact accelerator complex with intense proton beam. The detailed design study of a plasma production chamber with a cryogenic cooler is investigated.  
TUPLS095 Recent Progress about DPIS 0
 
  • M. Okamura, R.A. Jameson
    RIKEN, Saitama
  • T. Kanesue
    Kyushu University, Hakozaki
  • H. Kashiwagi
    JAEA/ARTC, Gunma-ken
  • A. Kondrashev
    ITEP, Moscow
  • K. Sakakibara
    RLNR, Tokyo
  • A. Schempp
    IAP, Frankfurt-am-Main
  • J. Tamura
    TIT, Yokohama
 
  We have focused on high brightness of induced plasma in Laser Ion Source (LIS) to provide intense highly charged ions efficiently. To take the advantage of the intrinsic density of the laser plasma, Direct Plasma Injection Scheme (DPIS) has been developed. The induced laser plasma has initial expanding velocity and can be delivered directly to the RFQ. Extraction electrodes and focusing devices in LEBT are not needed. Since 2004, a newly designed RFQ has been used to verify the capability of the new ion production scheme. We succeeded to accelerate 60 m A of Carbon beam and 60 mA of Aluminium beam. We have also tried to understand plasma properties of various species by measuring charge states distributions and time structures, and are now ready to accelerate heavier species. Currently Silver 15+ beam is planned to be accelerated. In the conference, design strategies and detailed techniques for the DPIS will be described based on the measured plasma properties of various elements and new findings obtained from recent acceleration experiments. The durability and the reproducibility will be also explained.