A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Takemoto, S.

Paper Title Page
WEPLS057 Equivalent Velocity Spectroscopy Based on Femtosecond Electron Beam Accelerator 2511
 
  • S. Takemoto, T. Kondoh, J. Yang, Y. Yoshida
    ISIR, Osaka
 
  A new femtosecond pulse radiolysis system, which is called as "Equivalent Velocity Spectroscopy (EVS)" based on a photocathode rf linear accelerator and a femtosecond laser, is developed in ISIR for the study of primly process and ultrafast electron-induced reactions for the nanofabrication. In order to achieve a high time resolution on femtosecond scale, a femtosecond electron beam bunch produced by a photocathode accelerator and a synchronized femtosecond laser were used. The electron bunch and laser pulse were injected with an angle determined by the refractive index of the sample. The electron bunch was also rotated with a same angle, resulting in the time resolution degradation due to the velocity difference between light and the electron in the sample is thus avoided. A jitter compensation technique with a femtosecond streak camera was used to reduce the time jitter between the electron bunch and laser pulse. Moreover, in EVS, a technique of double laser pulse injection was used to improve the signal to noise ratio due to the fluctuation of the laser intensity during the measurement.