A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Suzuki, H.

Paper Title Page
WEPCH128 Virtual Accelerator as an Operation Tool at J-PARC 3 GeV Rapid Cycling Synchrotron (RCS) 2224
 
  • H. Harada, K. Shigaki
    Hiroshima University, Higashi-Hiroshima
  • K. Furukawa
    KEK, Ibaraki
  • H. Hotchi, F. Noda, H. Sako, H. Suzuki
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Machida
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
 
  We developed a virtual accelerator based on EPICS for 3 GeV Rapid-Cycle Synchrotron (RCS) in J-PARC. It is important to have an on-line model of optics parameters, such as tunes, Twiss parameters, dispersion function, at the commissioning stage in a high intensity proton machine. It gives a strong feedback for the RCS operation as a commissioning tool as well as for the studies of beam dynamics issues. Beam position monitors with finite resolutions, a transverse exciter to measure the betatron frequency, and a RF system with variable frequency to simulate off-momentum optics have been implemented into the system. The virtual accelerator system itself and some results of beam dynamics studies will be presented.  
TUPCH110 Upgrade of Main RF Cavity in UVSOR-II Electron Storage Ring 1268
 
  • A. Mochihashi, K. Hayashi, M. Hosaka, M. Katoh, J. Yamazaki
    UVSOR, Okazaki
  • H. Suzuki
    Toshiba, Yokohama
  • Y. Takashima
    Nagoya University, Nagoya
 
  The UVSOR electron storage ring, which is dedicated to a synchrotron radiation (SR) light source especially for VUV and Soft X-ray, has been improved at the beginning of 2003, and transverse emittance in the improved ring (UVSOR-II)* has been decreased from 165nm-rad to 60 and/or 27nm-rad. Users runs have been performed since September 2003 with 60nm-rad mode, and since then high brilliant SR beams have been supplied routinely for users. The 27nm-rad mode, however, was difficult to introduce to daily operation initially because Touschek lifetime was insufficient in such small emittance condition. To improve the beam lifetime and make full use of the SR beams, we have built new main RF cavity. The aim of the improvement was to increase momentum acceptance by increasing RF accelerating voltage; the previous cavity generated the voltage of 55kV, whereas the new one can generate 150kV in maximum without changing RF frequency (90.1MHz) and transmitter (20kW in maximum). The new cavity has been installed in the UVSOR-II in spring of 2005, and high power commissioning went on smoothly. Because of the improvement, from spring 2005 the UVSOR-II has switched the daily users run to 27nm-rad.

*M. Katoh et al., in this conference.

 
TUPCH132 Higher Order Mode (HOM) Damper of 500 MHz Damped Cavity for ASP Storage Ring 1325
 
  • J. Watanabe, K. Nakayama, K. Sato, H. Suzuki
    Toshiba, Yokohama
  • M. Izawa
    KEK, Ibaraki
  • A. Jackson, G. LeBlanc, K. Zingre
    ASP, Clayton, Victoria
  • T. Koseki
    RIKEN/RARF/CC, Saitama
  • N. Nakamura, H. Sakai, H. Takaki
    ISSP/SRL, Chiba
 
  TOSHIBA has delivered the storage ring RF system for the Australian Synchrotron Project(ASP). Two pairs of the 500MHz Higher Order Mode(HOM) damped cavities were applied for this system. Two on-centered and one off-centered dampers were attached for damping the longitudinal HOM impedance down to less than 20kOhm/GHz. In order to reduce the coupling of off-center damper for accelerating mode and improve cooling power of damper, New HOM damper was designed by optimizing SiC absorber structure and damper antenna length using HFSS code. The design and manufacture of the new HOM damper and the test are described.