A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Smith, R.J.

Paper Title Page
MOPCH160 A Beam-based High Resolution Phase Imbalance Measurement Method for the ILC Crab Cavities 433
 
  • A. Kalinin, L. Ma, R.J. Smith
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  A high resolution method of RF phase adjustment and test is proposed for the Crab Cavity system of the ILC. The method is based on beam as ultimate test instrument. To measure phase imbalance in the pair of crab cavities (<0.02deg at 1.3GHz is required), a low energy (~1GeV) beam is used. A bunch center-of-mass trajectory through the cavities spaced (n+1/2) RF wavelengths and excited as in the case of the ILC, is a straight line for phase-balanced cavities and gets a kick when unbalanced. The kick is measured by two spaced BPMs with reference to the initial trajectory angle measured by two other BPMs. The method is insensitive to a bunch arrival time jitter and RF phase Common Mode jitter. A prototype of the test bench based on the method, is proposed. Using a 10MeV beam, two simple dipole cavities and low RF power, the prototype can be utilized for mastering high resolution measurements, for adjustment and tests of low level electronics of the Crab Cavity system and RF systems of XFEL ERLs as well. The phase resolution of the prototype is estimated as 0.01deg and the amplitude resolution as 0.01%.  
TUPCH038 Beam Loss Monitoring and Machine Protection Designs for the Daresbury Laboratory Energy Recovery Linac Prototype 1088
 
  • S.R. Buckley, R.J. Smith
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  Daresbury Laboratory is currently constructing an energy recovery linac prototype (ERLP). This is to carry out the necessary research and development of the technology of photo-cathode electron guns and superconducting linacs so that a fourth generation light source (4GLS) can be designed and constructed. Beam loss monitoring and machine protection systems are vital areas for the successful operation of the ERLP. These systems are required, both for efficient commissioning and for hardware protection during operation. This paper gives an overview of the system requirements, options available and details of the final design specification.