A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Sinyatkin, S.V.

Paper Title Page
MOPLS134 Minimizing Emittance for the CLIC Damping Ring 870
 
  • H.-H. Braun, M. Korostelev, D. Schulte, F. Zimmermann
    CERN, Geneva
  • E.B. Levitchev, P.A. Piminov, S.V. Sinyatkin, P. Vobly, K. Zolotarev
    BINP SB RAS, Novosibirsk
 
  The CLIC damping rings aim at unprecedented small normalized equilibrium emittances of 3.3 nm vertical and 550 nm horizontal, for a bunch charge of 2.6 109 particles and an energy of 2.4 GeV. In this parameter regime the dominant emittance growth mechanism is intra-beam scattering. Intense synchrotron radiation damping from wigglers is required to counteract its effect. Here the overall optimization of the wiggler parameters is described, taking into account state-of-the-art wiggler technologies, wiggler effects on dynamic aperture, and problems of wiggler radiation absorption. Two technical solutions, one based on superconducting magnet technology and the other on permanent magnets, are presented. Although dynamic aperture and tolerances of this ring design remain challenging, benefits are obtained from the strong damping. Only bunches for a single machine pulse need to be stored, making injection/extraction particularly simple and limiting the synchrotron-radiation power. With a 360 m circumference, the ring remains comparatively small.  
THPLS013 The Magnets of the Metrology Light Source in Berlin-Adlershof 3296
 
  • P. Budz, M. Abo-Bakr, K. Buerkmann-Gehrlein, V. Duerr, J. Kolbe, D. Krämer, J. Rahn, G. Wüstefeld
    BESSY GmbH, Berlin
  • I.N. Churkin, E.R. Rouvinsky, E.P. Semenov, S.V. Sinyatkin, A.G. Steshov
    BINP SB RAS, Novosibirsk
  • R. Klein, G. Ulm
    PTB, Berlin
 
  PTB, the German National Metrology Institute in close cooperation with BESSY II, is currently carrying out the project of constructing the low-energy "Metrology Light Source" (MLS) as a synchrotron radiation facility situated in the close vicinity of BESSY II. Construction of the MLS housing is in progress and nearly finished. The user operation is scheduled to begin in 2008. Dedicated to metrology and technology development in the UV and EUV spectral range, the MLS will bridge the gap that is existent since the shutdown of BESSY I. A 100 MeV microtron delivered by Danfysik A/S will provide the electrons for the MLS with a structure of asymmetric double bend achromat. The total circumference of the MLS is 48 m. The electron energy is ramped to the desired value between 200 MeV and 600 MeV. The MLS magnetic lattice, consisting of 8 bending magnets, 24 quadrupole magnets, 24 sextupole magnets and 4 octupole magnets, is laid out to facilitate this operation. The contract for the MLS magnets is awarded to the Budker Institute for Nuclear Physics. A description of the MLS magnets based on the results of the factory acceptance tests should be presented.