A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Siciliano, M.V.

Paper Title Page
THPCH140 New Pulsed Current and Voltage Circuits Based on Transmission Lines 3122
 
  • V. Nassisi, F. Belloni, D. Doria, A. Lorusso, M.V. Siciliano, L. Velardi
    INFN-Lecce, Lecce
 
  We present two novel circuits able to compress current or voltage pulse named current compressor circuit (CCC) and voltage compressor circuit (VCC), and two novel amplifier circuits able to double the current or voltage pulse. The compressing circuits were composed by a transmission line, l long and a storage line, l/2 long. The CCC compressed the current pulse by a factor of 2 doubling its intensity, while the VCC compressed the voltage pulse by a factor of 2 doubling its amplitude. The amplifying circuits were composed by a R0 transmission line closed on a set of two parallel or series storage lines which doubled the intensity of the pulses. The current pulse amplifier (CPA) had two R0/2 storage lines in parallel, while the voltage pulse amplifier (VPA) had two 2R0 storage lines in series. The storage line was half long with respect to the input-pulse. In both circuits, one storage line was characterized by an open extremity and the other line by a closed extremity. Connecting the storage lines to suitable load resistors, R0/4, and 4R0 for the CPA and VPA, respectively, a twice of the pulse intensity was obtained. The circuits were studied by computer simulations.  
THPCH152 Temporal Quantum Efficiency of a Micro-structured Cathode 3149
 
  • V. Nassisi, F. Belloni, G. Caretto, D. Doria, A. Lorusso, L. Martina, M.V. Siciliano
    INFN-Lecce, Lecce
 
  In this work the experimental and simulation results of photoemission studies for photoelectrons are presented*. The cathode used was a Zn disc having the emitting surface morphologically modified. Two different excimer lasers were employed like energy source to apply the photoelectron process: XeCl (308nm, 10ns) and KrF (248nm, 20ns). Experimental parameters were the laser fluence (up to 70 mJ/cm2) and the anode-cathode voltage (up to 20 kV). The output current was detected by a resistive shunt with the same value of the characteristic impedance of the sistem, about 100 ?. In this way, our device was able to record fast current signals. The best values of global quantum efficiency were approximately 5x 10-6 for XeCl and 1x 10-4 for KrF laser, while the peaks of the temporal quantum efficiency were 8x 10-6 and 1.4x10-4, respectively. The higher efficiency for KrF is ascribed to higher photon energy and to Schottky effect. Several electron-beam simulations using OPERA 3-D were carried out to analyze the influence of the geometrical characteristics of the diode. Simulating the photoemission by cathodes with micro-structures the output current was dependent on cathode roughness.

*L. Martina et al. Rev. Sci. Instrum., 73, 2552 (2002).