A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Shishlo, A.P.

 
Paper Title Page
MOPCH127 SNS Warm Linac Commissioning Results 342
 
  • A.V. Aleksandrov, S. Assadi, W. Blokland, P. Chu, S.M. Cousineau, V.V. Danilov, C. Deibele, J. Galambos, S. Henderson, D.-O. Jeon, M.A. Plum, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee
 
  The Spallation Neutron Source accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of an H- injector, capable of producing one-ms-long pulses at 60Hz repetition rate with 38 mA peak current, a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The 2.5MeV beam from the Front End is accelerated to 86 MeV in the Drift Tube Linac, then to 185 MeV in a Coupled-Cavity Linac and finally to 1 GeV in the Superconducting Linac. The staged beam commissioning of the accelerator complex is proceeding as component installation progresses. Current results of the beam commissioning program of the warm linac will be presented including transverse emittance evolution along the linac, longitudinal bunch profile measurements at the beginning and end of the linac, and beam loss study.  
MOPCH131 SNS Ring Commissioning Results 351
 
  • M.A. Plum, A.V. Aleksandrov, S. Assadi, W. Blokland, I.E. Campisi, P. Chu, S.M. Cousineau, V.V. Danilov, C. Deibele, G.W. Dodson, J. Galambos, M. Giannella, S. Henderson, J.A. Holmes, D.-O. Jeon, S.-H. Kim, C.D. Long, T.A. Pelaia, T.J. Shea, A.P. Shishlo, Y. Zhang
    ORNL, Oak Ridge, Tennessee
 
  The Spallation Neutron Source (SNS) comprises a 1.5-MW, 60-Hz, 1-GeV linac, an accumulator ring, associated beam lines, and a spallation neutron target. Construction began in 1999 and the project is on track to be completed in June 2006. By September 2005 the facility was commissioned up through the end of the superconducting linac, and in January 2006 commissioning began on the High Energy Beam Transport beam line, the accumulator ring, and the Ring to Target Beam Transport beam line up to the Extraction Beam Dump. In this paper we will discuss early results from ring commissioning including a comparison of achieved vs. design beam machine parameters and the maximum beam intensity achieved to date.  
THPCH025 Electron Cloud Self-consistent Simulations for the SNS Ring 2832
 
  • A.P. Shishlo, S.M. Cousineau, V.V. Danilov, S. Henderson, J.A. Holmes, M.A. Plum
    ORNL, Oak Ridge, Tennessee
 
  The electron cloud dynamics is simulated for the Spallation Neutron Source ring using the self-consistent electron-cloud model for long-bunched proton beams implemented in the ORBIT code. These simulations feature simultaneous calculations of the dynamics of the proton bunch and of the electron cloud, including electron multipacting using a realistic secondary emission surface model. The frequency spectra and growth rates of the proton bunch transverse instability are studied as functions of the RF cavity voltage. The effectiveness of an electron-cloud instability suppression system is also studied using an ORBIT model of the real feedback system. SNS is a collaboration of six US National Laboratories: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Thomas Jefferson National Accelerator Facility (TJNAF), Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), and Oak Ridge National Laboratory (ORNL).  
TUOCFI02 First Results of SNS Laser Stripping Experiment 980
 
  • V.V. Danilov, A.V. Aleksandrov, S. Assadi, J. Barhen, Y. Braiman, D.L. Brown, W. Grice, S. Henderson, J.A. Holmes, Y. Liu, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee
 
  Thin carbon foils are used as strippers for charge exchange injection into high intensity proton rings. However, the stripping foils become radioactive and produce uncontrolled beam loss, which is one of the main factors limiting beam power in high intensity proton rings. Recently, we presented a scheme for laser stripping of an H- beam for the SNS ring. First, H- atoms are converted to H0 by a magnetic field, then H0 atoms are excited from the ground state to the upper levels by a laser, and the excited states are converted to protons by a magnetic field. This paper presents first results of the SNS laser stripping proof-of-principle experiment. The experimental setup is described, and possible explanations of the data are discussed.  
slides icon Transparencies
WEPCH141 Accelerator Physics Code Web Repository 2254
 
  • F. Zimmermann, R. Basset, E. Benedetto, U. Dorda, M. Giovannozzi, Y. Papaphilippou, T. Pieloni, F. Ruggiero, G. Rumolo, F. Schmidt, E. Todesco
    CERN, Geneva
  • D.T. Abell
    Tech-X, Boulder, Colorado
  • R. Bartolini
    Diamond, Oxfordshire
  • O. Boine-Frankenheim, G. Franchetti, I. Hofmann
    GSI, Darmstadt
  • Y. Cai, M.T.F. Pivi
    SLAC, Menlo Park, California
  • Y.H. Chin, K. Ohmi, K. Oide
    KEK, Ibaraki
  • S.M. Cousineau, V.V. Danilov, J.A. Holmes, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee
  • L. Farvacque
    ESRF, Grenoble
  • A. Friedman
    LLNL, Livermore, California
  • M.A. Furman, D.P. Grote, J. Qiang, G.L. Sabbi, P.A. Seidl, J.-L. Vay
    LBNL, Berkeley, California
  • D. Kaltchev
    TRIUMF, Vancouver
  • T.C. Katsouleas
    USC, Los Angeles, California
  • E.-S. Kim
    PAL, Pohang, Kyungbuk
  • S. Machida
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • J. Payet
    CEA, Gif-sur-Yvette
  • T. Sen
    Fermilab, Batavia, Illinois
  • J. Wei
    BNL, Upton, Long Island, New York
  • B. Zotter
    Honorary CERN Staff Member, Grand-Saconnex
 
  In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this web repository, illustrate its usage, and discuss our future plans.