A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Severino, F.

Paper Title Page
THPCH078 Successful Bunched-Beam Stochastic Cooling in RHIC 2967
 
  • J.M. Brennan, M. Blaskiewicz, F. Severino
    BNL, Upton, Long Island, New York
 
  Stochastic Cooling of high energy and high frequency bunched beam has been demonstrated in RHIC at 100 GeV. Narrowing of the Schottky spectrum and shorting of the bunch length resulted from cooling the beam for 90 minutes. The purpose of the stochastic cooling is to counteract the fundamental limit of the luminosity lifetime of heavy ions in RHIC which is Intra-Beam Scattering. IBS drives transverse emittance growth and longitudinal de-bunching. The major components of the system have been tested with heavy ion and proton beams in previous runs in RHIC, demonstrating that the difficult challenges of high frequency bunched beam stochastic cooling can be overcome. The vexing problem of pollution of the Schottky spectrum by coherent components is solved with optimized filtering and high dynamic range low noise electronics. A set of 16 high-Q cavities is used to achieve adequate kicker voltage in the 5 to 8 GHz band. This technique exploits the bunched beam time structure to level the microwave power requirement and enables the use of solid state amplifiers to drive the kickers. Because RHIC did not operate with heavy ions in the FY06 run, the system was tested with specially prepared low intensity protons bunches of 2·109 particles.