A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Schmidt, C.

Paper Title Page
WEPCH122 2D Wake Field Calculations of Tapered Structures with Different FDTD Discretization Schemes 2206
 
  • C. Schmidt
    Rostock University, Institute for General Electrical Engn., Rostock
  • H.-W. Glock, U. van Rienen
    Rostock University, Faculty of Engineering, Rostock
 
  The continual performance improvement of particle accelerators requires advanced prediction of parasitic wake field effects, even in structures of comparatively weak influence like tapers. In the case of smooth tapered components, even well established codes like MAFIA* demonstrate strong discretization dependency of the results or solver instabilities, making them not reliable in such applications. Grid dispersion is assumed to generate this failure. In Ref.** an alternative discretization scheme is described, using a homogeneous rotated mesh intended to eliminate such grid dispersion effects. In order to study the dependence on the discretization applied, we use this scheme to calculate wake fields in prototype taper structures of rotational symmetry. Furthermore a comparison is provided with the results of a non-rotated mesh, MAFIA runs and - so far applicable - analytical approaches.

*MAFIA V4.107: CST GmbH, Bad Nauheimer Str. 19, D-64289 Darmstadt**R. Hampel et al. New discretization scheme for wake field computation in cylindrically symmetric structure. Proc. EPAC'04, pp 2559